
Math 154: Probability Theory, Lecture Notes
Kevin Yang
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1. WEEK 1, STARTING TUE. JAN. 23, 2024

1.1. Probability spaces and events.

Definition 1.1. Take a set Ω. A σ-algebra F is a collection of subsets of Ω such that

• Ω, ∅ ∈ F.
• If {An}∞n=1 is a collection of sets in F, then ∪∞n=1An ∈ F and ∩∞n=1An ∈ F.

Sets in F are called events. A probability measure P on (Ω,F) is a function P : F →
[0, 1] such that

• P(∅) = 0 and P(Ω) = 1
• If {An}∞n=1 is a pairwise disjoint collection of sets in F, then P(∪∞n=1An) =

∑∞
n=1 P(An).

• If {En}∞n=1 are in F and E1 ⊆ E2 ⊆ . . ., then P(En)→ P(∪∞k=1Ek).
• If {Bn}∞n=1 are in F and B1 ⊇ B1 ⊇ . . ., then P(Bn)→ P(∩∞n=1Bn).
• The previous two bullet points are necessary parts of the definition. They must follow

The data (Ω,F,P) is called a probability space.

Example 1.2. A coin is tossed. In this case, Ω = {H,T} (heads or tails). We can take
F = 2Ω. It contains {H,T} (the coin lands heads or tails), {H} (the coin lands heads),
{T} (the coin lands tails), and ∅ (the coin lands neither heads or tails). We have P(H) =
1− P(T ), and P({H,T}) = 1 and P(∅) = 0. If it is a fair coin, then P(H),P(T ) = 1

2
.

Example 1.3. A six-sided dice is thrown. Ω = {1, 2, 3, 4, 5, 6}. We can take F =
2Ω. In general, if Ω is finite, one should always take F = 2Ω. If X ∈ F has size 1,
then P(X) = 1

6
. Then, use the additivity property to extend all of P. (For example,

P({1, 2}) = 1
6

+ 1
6

= 1
3
.

Lemma 1.4. (1) P(AC) = 1− P(A), where AC = Ω \ A.
(2) If B ⊇ A, then P(B) = P(A) + P(B \ A) > P(A).
(3) If A1, . . . , An ∈ F, then

P (∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj) +
∑
i<j<k

P(Ai ∩ Aj ∩ Ak)− . . .

+ (−1)n+1P(A1 ∩ . . . ∩ An).

For n = 2, this reduces to P(A ∪B) = P(A) + P(B)− P(A ∩B).
(4) If A1, . . . , An, . . . ∈ F, then P(∪∞n=1An) 6

∑∞
n=1 P(An). This is the union bound

Proof. Take the sequence A1 = A and A2 = AC (and An = ∅ for all n > 3). We have
P(A)+P(AC) = 1, so point (1) follows. For point (2), writeB = A∪(B\A). SetA1 = A,
A2 = B \A, and An = ∅ for n > 3. Thus P(A) + P(B \A) = P(A ∪ (B \A)) = P(B),
so point (2) follows. We will not prove point (3), since it is not really useful, but it’s the
same general principle as point (2). For point (4), we first define an auxiliary sequence
Bn = An \ ∪n−1

k=1Ak and B1 = B. Then Bn are pairwise disjoint. So P(∪∞n=1Bn) =∑∞
n=1 P(Bn). But ∪∞n=1Bn = ∪∞n=1An, and Bn ⊆ An, so P(Bn) 6 P(An), and point (4)

follows. �
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Lemma 1.5. Let {An}∞n=1 be in F. Then (∪∞n=1An)C = ∩∞n=1A
C
n and (∩∞n=1An)C =

∪∞n=1A
C
n . One can take An = ∅ or An = Ω for all n > N for some N to take finite unions

and intersections.

Proof. Take x ∈ (∪∞n=1An)C . Thus, x 6∈ An for any n. So x ∈ ACn for all n, which means
x ∈ ∩∞n=1A

C
n . Now, take x ∈ ∩∞n=1A

C
n , so x 6∈ An for all n. This means x 6∈ ∪∞n=1An,

thus x ∈ (∪∞n=1An)C . This shows (∪∞n=1An)C = ∩∞n=1A
C
n . The other claim follows by the

same argument. �

Example 1.6. LetA,B ∈ F. Suppose P(A) = 3
4

and P(B) = 1
3
. We can bound P(A∩B)

as follows. First,

P(A ∩B) = P(A) + P(B)− P(A ∪B).

We know P(A∪B) 6 1, so P(A∩B) > 3
4
+ 1

3
−1 = 1

12
. Also, we know P(A∪B) > P(A),

so P(A ∩B) 6 3
4

+ 1
3
− 3

4
= 1

3
.

1.2. Conditional probability.

Definition 1.7. Take B ∈ F so that P(B) > 0. The conditional probability of A given B
is

P(A|B) =
P(A ∩B)

P(B)
.

The idea is that one takes Ω, and restricts to a smaller probability space with set B. The
σ-algebra is just given by taking F and intersecting with B (feel free to try to show that
this is a σ-algebra). P(·|B) is the “natural” probability measure on this probability space.

Example 1.8. Two fair dice are thrown. Condition on the first showing 3. What is the
probability that the sum of the two rolls is > 6? Let A be the event where the sum of the
two rolls is > 6 and B is the event where the first roll is a 3. We have

P(A|B) =
P(A ∩B)

P(B)
=

P(A ∩B)
1
6

.

Note that A ∩ B is the event where the second roll is 4, 5, 6, and the first roll is a 3. In
particular, there are 3 outcomes out of 36 that are okay, so the probability of P(A ∩B) =
3
36

. This shows P(A|B) = 1
2
.

Example 1.9. A coin is flipped twice independently. What is the probability that both are
heads, given that one is a heads. It is not 1

2
. Indeed, let A be the event of two heads, and

B is the event where one is a heads. There are four total outcomes, three of which have at
least one heads. So P(B) = 3

4
. On the other hand, A ∩ B is just the event of two heads,

so its probability is 1
4
. This shows P(A|B) = P(A∩B)

P(B)
= 1

3
.

Lemma 1.10 (Law of total probability). We say that B1, . . . , Bn ∈ F form a partition of
Ω if they are pairwise disjoint, positive probability, and ∪ni=1Bi = Ω. For any partition
B1, . . . , Bn and any event A, we have

P(A) =
n∑
i=1

P(A|Bi)P(Bi).
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In particular, for any events A,B (where B 6= Ω, ∅), we have P(A) = P(A|B)P(B) +
P(A|BC)P(BC).

Proof. Since B1, . . . , Bn is a partition, the collection A∩B1, . . . , A∩Bn are disjoint and
∪nk=1A ∩ Bk = A. (To see this, note that clearly A ∩ Bk ⊆ A, so it suffices to show
that A ⊆ ∪nk=1A ∩ Bk. Take x ∈ A. Then x ∈ Ω, and since B1, . . . , Bn is a partition,
we know x ∈ Bk for some k. Thus x ∈ A ∩ Bk, and thus x ∈ ∪nk=1A ∩ Bk.) From the
first sentence, we get P(A) = P(∪nk=1A ∩ Bkj) =

∑n
k=1 P(A ∩ Bk). By the definition of

conditional probability, we have P(A ∩ Bk) = P(A|Bk)P(Bk). Combining the previous
two sentences finishes the proof. �

Theorem 1.11 (Bayes’ formula). This will be helpful for the homework For any events
A,B of positive probability, we have P(A|B) = P(B|A)P(A)

P(B)
.

Proof. It suffices to combine P(A ∩ B) = P(A|B)P(B) and P(A ∩ B) = P(B|A)P(A).
Indeed, this implies P(A|B)P(B) = P(B|A)P(A). Now, divide by P(B) on both sides
(which one can do because B has positive probability!). �

1.3. Independence.

Definition 1.12. We say events A,B are independent if P(A ∩ B) = P(A)P(B). Inde-
pendent and disjoint are totally different notions! This is the same as P(A|B) = P(A).

We say a family of events {Ai}∞i=1 are jointly independent if P(∩ni=1Ai) =
∏n

i=1 P(Ai).
We say it is pairwise independent if Ai, Aj are independent for all i 6= j.

Example 1.13. Let Ω = {abc, acb, cab, cba, bca, bac, aaa, bbb, ccc}. Each element in Ω
occurs with probability 1

9
. Let Ak be the event where the k-th letter (for k = 1, 2, 3) is a.

We know that A1, A2, A3 are pairwise independent. Indeed, A1 ∩ A2 is the event where
the first and second letter are both a. Thus, A1 ∩ A2 = {aaa}, so P(A1 ∩ A2) = 1

9
. Note

that P(A1)P(A2) = 1
3

1
3

= 1
9
. Similar arguments apply to A1, A3 and A2, A3 (try it!).

But, A1, A2, A3 are not jointly independent. Indeed, A1 ∩ A2 ∩ A3 = {aaa}, so its
probability is 1

9
. But P(A1)P(A2)P(A3) = 1

3
1
3

1
3

= 1
27

.

Example 1.14. We pick a card uniformly at random from a deck of 52. Each has prob-
ability 1

52
. Let A be the event where a king is picked, and B is the event where a spade

is picked. Then P(A) = 4
52

= 1
13

, and P(B) = 1
4
. Also, P(A ∩ B) = 1

52
. So A,B are

independent.

Lemma 1.15. If A,B are independent, then AC , B are independent and AC , BC are
independent.

Proof. We claim P(AC ∩ B) + P(A ∩ B) = P(B). (This follows because AC ∩ B and
A∩B are disjoint and union toB.) SinceA,B are independent, this implies P(AC∩B) =
P(B) − P(A ∩ B) = P(B) − P(A)P(B) = (1 − P(A))P(B). But P(AC) = 1 − P(A),
so we get P(AC ∩B) = P(AC)P(B), which means AC , B are independent. To show that
AC , BC are independent, use the first result (but replace A by B and B by AC). �

Example 1.16. Two fair dice are rolled independently. Let A be the event where the sum
of the rolls is 7. Let B be the event where the first roll is 1. Then A,B are independent.
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Indeed, P(A|B) = 1
6

(since a six is needed on the second roll). But P(A) = 6
36

, since for
any value of the first roll, there is exactly one value of the second roll to realize A. If we
change 7 to 1, then A,B are no longer independent.

Definition 1.17. Fix an event B with positive probability. We say that A1, A2 are condi-
tionally independent (given/conditioning on B) if P(A1 ∩ A2|B) = P(A1|B)P(A2|B).

Lemma 1.18. Fix B. Then A1, A2 are conditionally independent given B if and only if
P(A1|A2, B) = P(A1|B).

Proof. Suppose conditional independence of A1, A2. Then

P(A1|A2, B) =
P(A1 ∩ A2 ∩B)

P(A2 ∩B)

=
P(A1 ∩ A2|B)P(B)

P(A2|B)P(B)

=
P(A1|B)P(A2|B)P(B)

P(A2|B)P(B)

= P(A1|B).

Now suppose that P(A1|A2, B) = P(A1|B). Then

P(A1 ∩ A2|B) =
P(A1 ∩ A2 ∩B)

P(B)

=
P(A1|A2, B)P(A2 ∩B)

P(B)

=
P(A1|B)P(A2|B)P(B)

P(B)
= P(A1|B)P(A2|B).

This finishes the proof. �

Example 1.19. Suppose I have two coins. One is fair, and the other one has probability
of heads equal to 1

3
. I choose one of the two coins uniformly at random, and I toss it twice

(independently). Let X be the value of the first flip and Y be the value of the second flip.
Then X and Y are conditionally independent given that I choose the fair coin. (Same is
true if I condition on choosing the non-fair coin.)

1.4. Some examples.
(1) (Symmetric random walk, “gambler’s ruin”) Let’s play a game. We flip a coin repeat-

edly. If it lands heads, I get one dollar. If it lands tails, I lose a dollar. (Suppose this is
a fair coin for now.) I want to save N dollars, at which point I stop the game, so that
I can retire happily. But if I end up with zero dollars at any point, we stop the game,
since I can’t play anymore.

Suppose I start with 0 < k < N dollars. What is the probability that I win?
• Let pk = Pk(A) be the event that I win if we start at k dollars. By the law of total

probability, if B is the event that we toss a heads, then

Pk(A) = Pk(A|B)P(B) + Pk(A|BC)P(BC).
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We have Pk(A|B) = pk+1 and Pk(A|BC) = pk−1 and P(B),P(BC) = 1
2
. So

pk = 1
2
(pk+1 + pk−1). But also p0 = 0 and pN = 1. We will talk later in this class

about how to solve this equation efficiently, but one can check that pk = 1 − k
N

solves this equation.
(2) (Testimonies) We are in court over whether or not Kevin stole the piece of chalk.

We have two witnesses Alf and Bob. Alf tells the truth with probability α and Bob
commits perjury with probability β. There is no collusion between these two (as in
whether Kevin did it or not, their testimonies are independent). Let A be the event
where Alf says Kevin stole it, and B be the event where Bob says Kevin stole it. Let
T be the event where Kevin stole it. What is probability that Kevin stole it given that
Alf and Bob said so, in terms of τ = P(T )?
• We need to compute P(T |A ∩B). By Bayes’ rule, we have

P(T |A ∩B) =
P(A ∩B|T )P(T )

P(A ∩B)
.

We have P(A ∩ B|T ) = P(A|T )P(B|T ) = αβ, so the numerator is αβτ . For the
bottom, by the law of total probability, we have

P(A ∩B) = P(A ∩B|T )P(T ) + P(A ∩B|TC)P(T )

= αβτ + (1− α)(1− β)(1− τ).

So, P(T |A ∩B) = αβτ
αβτ+(1−α)(1−β)(1−τ)

.
(3) (Simpson’s paradox)

2. WEEK 2, STARTING TUE. JAN. 30, 2024

2.1. Random variables.

Definition 2.1. A random variable is a function X : Ω → R such that for any x ∈ R,
the event {X 6 x} is in F. The function F (x) := P(X 6 x) is the distribution function
associated to X .

We say X is discrete if it only takes values in a countable set {x1, . . . , xn, . . .} of R.
We say X is continuous if its distribution function can be represented as

F (x) = P(X 6 x) =
w x

−∞
f(u)du,

where f : R→ [0,∞) is called the probability density function (it needs to be integrable,
i.e.

r
R f(u)du <∞).

It is a fact that if X, Y are random variables and a, b ∈ R, then aX + bY is a random
variable!

Lemma 2.2. A distribution function F satisfies
(1) If x 6 y, then F (x) 6 F (y) (even if x < y, we can still have F (x) = F (y)!)
(2) F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞.
(3) F (x+ h)→ F (x) as h→ 0 from above.

Proof. (1) If x 6 y, then {X 6 x} ⊆ {X 6 y}.
7



(2) Let An := {X 6 −an}, where an →∞ is strictly increasing. Then F (an) = P(An).
But An ⊇ Am for all m > n. So F (an) = P(An)→ P(∩∞m=1Am) = P(∅) = 0.

Let Bn := {X > bn}, where bn →∞ is strictly increasing. Note that Bn ⊆ Bm if
m > n. Then F (bn) = P(Bn) = P(∪∞m=1Bm) = P(Ω) = 1.

(3) Let An = {X 6 x + hn}, where hn → 0 is strictly decreasing. Then ∩∞n=1An =
{X 6 x}, and An ⊇ Am ifm > n. So F (x+hn) = P(An)→ P(∩∞n=1An) = P(X 6
x) = F (x).

�

Definition 2.3. Suppose X is a discrete random variable. Its probability mass function
(or pmf ) is the function f : R → [0, 1] such that f(x) = P(X = x). This is generally
much easier to compute than the distribution function!

Example 2.4 (Bernoulli distribution). Any random variable which is valued in {0, 1}. For
example, the outcome of flipping a coin is Bernoulli, if we interpret heads as 1 and tails as
0. If the probability of heads is p, then its pmf if p(1) = p and p(0) = 1− p and p(x) = 0
for x 6= 0, 1. The distribution function is F (x) = 0 for all x < 0, and F (x) = 1 − p for
all x ∈ [0, 1), and F (x) = 1 for all x > 1.

For shorthand, we write X ∼ Bern(p).

Example 2.5 (Binomial distribution). Let X1, . . . , Xn be independent Bernoulli random
variables. Set Y = X1 + . . . + Xn. This is a binomial random variable. It is discrete,
since it takes values in {0, 1, . . . , n}. Its probability mass function satisfies p(x) = 0 if
x 6∈ {0, 1, . . . , n}. For any k ∈ {0, 1, . . . , n}, p(k) is the probability of flipping exactly
k heads. There are

(
n
k

)
= n!

k!(n−k)!
ways to choose k out of n flips to be heads. The

probability of flipping this particular sequence of heads and tails is pk(1 − p)n−k. So
p(k) =

(
n
k

)
pk(1− p)n−k.

For shorthand, we write X ∼ Bin(n, p).

Example 2.6 (Poisson distribution). X takes values in the set {0, 1, 2, . . .}. Its pmf is
defined to be

P(X = k) = pλ(k) =
λk

k!
e−λ.

Here, λ > 0 is a fixed parameter. Note that
∞∑
k=0

pλ(k) =
∞∑
k=0

λk

k!
e−λ = eλe−λ = 1,

so pλ(·) is indeed a probability mass function. For shorthand, we write X ∼ Pois(λ).

Example 2.7 (Geometric distribution). Flip a coin repeatedly with probability of heads
being p. Let X be the first time that the coin turns up heads. This takes values in {1, . . .}.
Its pmf is P(X = k) = p(k) = (1 − p)k−1p. This is called the geometric distribution,
since

∞∑
k=1

p(k) = p
∞∑
k=0

(1− p)k = p
1

1− (1− p)
= 1

is a geometric series.
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Definition 2.8. A random vector of dimension n is a vector X = (X1, . . . , Xn) such that
X1, . . . , Xn : Ω→ R are random variables. If X1, . . . , Xn are discrete random variables,
then the pmf of X is defined to be the function

p(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

2.2. Independence of random variables.

Definition 2.9. A collection of random variables X1, . . . , Xn : Ω → R (i.e. on the same
probability space) are jointly independent if for open or closed subsets A1, . . . , An ⊆ R,
we have

P (∩ni=1{Xi ∈ Ai}) =
n∏
i=1

P(Xi ∈ Ai).

We say they are pairwise independent if Xi, Xj are independent for all i 6= j.

Lemma 2.10. LetX1, . . . , Xn be independent discrete random variables with pmfs p1, . . . , pn.
Then X1, . . . , Xn are jointly independent if and only if for any x1, . . . , xn ∈ R, we have

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

pi(xi).

Proof. IfX1, . . . , Xn are jointly independent, just take the formula for joint independence
above and set Ai = {xi} for all i. For the other direction, we have

P (∩ni=1{Xi ∈ Ai}) =
∑

x1∈A1,...,xn∈An

P(X1 = x1, . . . , Xn = xn)

=
∑
x1∈A1

. . .
∑
xn∈An

p1(x1) . . . pn(xn)

=
∑
x1∈A1

p1(x1) . . .
∑
xn∈An

pn(xn)

= P(X1 ∈ A1) . . .P(Xn ∈ An).

�

Example 2.11. A coin flips heads with probability p and tails with probability 1− p. Let
X be the number of heads and Y be the number of tails. These are not independent. (As
for the details why, P({X = 1} ∩ {Y = 1}) = 0 but P(X = 1)P(Y = 1) = p(1− p).)

Suppose that N is a Poisson random variable of parameter λ (it is independent of the
coin). Then X and Y are independent! Indeed,

P(X = x, Y = y) = P(X = x, Y = y|N = x+ y)P(N = x+ y)

=

(
x+ y

x

)
px(1− p)y λx+y

(x+ y)!
e−λ

=
(λp)x(λ(1− p))y

x!y!
e−λ.
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Since this has the form of f(x)f(y), this means independence. To see this exactly,

P(X = x) =
∞∑
y=0

P(X = x, Y = y)

=
(λp)x

x!
e−λp

∑
y=0

(λ(1− p))y

y!
e−λ(1−p)

=
(λp)x

x!
e−λp.

In particular, the number of heads and the number of tails are Poisson random variables
of parameters λp and λ(1− p), and they are independent of each other!

Lemma 2.12 (Convolution formula). Suppose X, Y are independent discrete random
variables that take values in Z. Let pX and pY be their pmfs. Then Z = X + Y takes
values in Z, and its pmf is

pZ(z) =
∑
k∈Z

pX(z − k)pY (k).

Proof. For any z ∈ Z, the event {Z = z} is equal to ∪k∈Z{X = z−k}∩{Y = k}. These
events in the union are disjoint, since X, Y cannot obtain two values simultaneously. So,
by independence, we have

P(Z = z) = P(∪k∈Z{X = z − k} ∩ {Y = k}) =
∑
k∈Z

P(X = z − k, Y = k)

=
∑
k∈Z

P(X = z − k)P(Y = k).

�

Example 2.13. TakeX1, X2 independent Bernoullis of parameter p (so P(X1 = 1),P(X2 =
1) = p). Let Z = X1 + X2. By the convolution formula and the fact that X1, X2 cannot
attain values other than 0 and 1, we have

P(Z = 0) =
∑
k∈Z

P(X = −k)P(Y = k) = P(X = 0)P(Y = 0) = (1− p)2,

P(Z = 1) =
∑
k∈Z

P(X = 1− k)P(Y = k)

= P(X = 1)P(Y = 0) + P(X = 0)P(Y = 1) = 2p(1− p),

P(Z = 2) =
∑
k∈Z

P(X = 2− k)P(Y = k) = P(X = 1)P(Y = 1) = p2.

In particular, Z ∼ Bin(2, p)!

Lemma 2.14. If X, Y are independent, then so are f(X) and g(Y ) (for any functions
f, g).

2.3. Expectation.
10



Definition 2.15. Let X be a discrete random variable with pmf p. Its expectation is
E(X) =

∑
x:p(x)>0 xp(x).

Lemma 2.16. (1) If X > 0 with probability 1, then E(X) > 0. Thus, if X, Y satisfy
X 6 Y , then E(X) 6 E(Y ).

(2) If a, b ∈ R, then E(aX + bY ) = aE(X) + bE(Y ) (linearity of expectation; note that
X, Y do not have to be independent!).

(3) If X = c with probability 1, then E(X) = c.

Proof. (1) We have E(X) =
∑

x:p(x)>0 xp(x). Since p(x) > 0 only if x > 0 by assump-
tion, we know xp(x) > 0, so E(X) > 0.

(2) We have

E(aX + bY ) =
∑
z

zP(aX + bY = z)

=
∑
z

z
∑
w

P(aX + bY = z|Y = w)P(Y = w)

=
∑
z

z
∑
w

P(aX + bw = z)P(Y = w)

=
∑
z

z
∑
w

∑
s

P(aX + bw = z|X = s)P(X = s)P(Y = w)

=
∑
w,s

(as+ bw)P(X = s)P(Y = w)

=
∑
s

(∑
w

(as+ bw)P(Y = w)

)
P(X = s)

=
∑
s

(as+ bE(Y ))P(Y = s)

= aE(X) + bE(Y ).

(3) By definition, we have E(X) =
∑

x:p(x)>0 xp(x). Only x = c has p(x) > 0, so
E(X) = cp(c) = c since p(c) = 1.

�

Example 2.17. If X ∼ Bern(p), then E(X) = p. If X ∼ Bin(n, p), then X = Y1 + . . .+
Yn where Yi ∼ Bern(p), so E(X) = np. If X ∼ Pois(λ), then

E(X) =
∞∑
k=0

kλk

k!
e−λ

=
∞∑
k=1

λk

(k − 1)!
e−λ

= λ

∞∑
k=0

λk

k!
e−λ = λ.

11



Now, supposeX has pmf p(k) = Ak−2 for k > 1 (whereA is a “normalization constant”,
so that

∑
k>1 p(k) = 1). Then EX =

∑∞
k=1Ak

−1 =∞.

2.4. Variance and higher moments.

Definition 2.18. Given a random variable X , its variance is Var(X) = E(X − E(X))2.
Its k-th moment (for any k > 0) is EXk. We will often take k to be an integer.

Given any random variables X, Y , the covariance between X and Y is Cov(X, Y ) :=
E[(X −E(X))(Y −E(Y ))]. In particular, we have Cov(X,X) = Var(X). We say X, Y
are uncorrelated if E(XY ) = E(X)E(Y ).

Lemma 2.19. (1) For any random variables X and Y , we have

Var(X) = E(X2)− (E(X))2, Cov(X, Y ) = E(XY )− E(X)E(Y ).

In particular, if X, Y are uncorrelated, then Cov(X, Y ) = 0.
(2) If X, Y are independent, then X, Y are uncorrelated.
(3) IfX1, . . . , Xn and Y1, . . . , Yn are random variables, and a1, . . . , an and b1, . . . , bn are

real numbers, then

Cov(
n∑
i=1

aiXi,
n∑
j=1

bjYj) =
n∑

i,j=1

aibjCov(Xi, Yj).

This is often called bilinearity of the covariance.
(4) For any a ∈ R, we have Var(aX) = a2Var(X). (In words, the variance is “qua-

dratic”.)
(5) There exists a constant c such thatX = cwith probability 1 if and only if Var(X) = 0.

Proof. (1) By definition, we have Cov(X, Y ) = E[XY−E(X)Y−XE(Y )+E(X)E(Y )] =
E[XY ]−E[X]E[Y ], since E[·] is always a constant (we also use linearity of expecta-
tion here). The formula for variance follows by taking Y = X .

(2) If X, Y are independent, then

E[XY ] =
∑
z

zP(XY = z)

=
∑
z

z
∑
w

P(XY = z|Y = w)P(Y = w)

=
∑
z

z
∑
w

P(wX = z|Y = w)P(Y = w)

=
∑
z

z
∑
w

P(Y = w)P(wX = z)

=
∑
z

z
∑
w

P(Y = w)
∑
s

P(wX = z|X = s)P(X = s)

=
∑
w,s

wsP(Y = w)P(X = s)

=
∑
w

wP(Y = w)
∑
s

P(X = s) = E(Y )E(X).

12



(3) We have

E

[
n∑
i=1

aiXi

n∑
j=1

bjYj

]
= E

[
n∑

i,j=1

aibjXiYj

]

=
n∑

i,j=1

aibjE[XiYj]

and

E

[
n∑
i=1

aiXi

]
E

[
n∑
j=1

bjYj

]
=

{
n∑
i=1

aiE[Xi]

}{
n∑
j=1

bjE[Yj]

}

=
n∑

i,j=1

aibjE[Xi]E[Yj].

Plug this into Cov(
∑n

i=1 aiXi,
∑n

j=1 bjYj) = E
[∑n

i=1 aiXi

∑n
j=1 bjYj

]
−E [

∑n
i=1 aiXi]E

[∑n
j=1 bjYj

]
to get the formula.

(4) Use part (3) with n = 1 and a1, b1 = a and X1, Y1 = X .
(5) If X = c with probability 1, then E(X) = c and X − E(X) = 0 with probability

1. So E[(X − E(X))2] = E[(c − c)2] = 0. If Var(X) = E[(X − E(X))2] = 0,
then X = E(X) with probability 1. Indeed, if X = d for d 6= E(X) with positive
probability p, since (X − E(X))2 > 0 with probability 1, we would get E[(X −
E(X))2] > p(d− E(X))2 > 0, a contradiction.

�

Example 2.20. Let X ∼ Bern(p). We saw before that EX = p. Now, note that X2 = X ,
since X ∈ {0, 1}, so that EX2 = EX = p as well. Thus, its variance is EX2 − (EX)2 =
p− p2. Now, assume that X ∼ Pois(λ). We saw that EX = λ. We compute

EX2 =
∞∑
k=0

k2λk

k!
e−λ = e−λ

∞∑
k=1

k2λk

k!

= e−λ
∞∑
k=1

kλk

(k − 1)!

= e−λλ
∞∑
k=0

(k + 1)λk

k!

= e−λλ
d

dλ

(
∞∑
k=0

λk+1

k!

)

= e−λλ
d

dλ

(
λeλ
)

= λ2 + λ.

13



Hence, the variance of X ∼ Pois(λ) is Var(X) = EX2 − (EX)2 = λ2 + λ − λ2 = λ.
Notice how this does not scale quadratically in λ!

2.5. Cauchy-Schwarz and Hölder inequalities.

Lemma 2.21. Suppose X, Y are two random variables. Then for any a > 0, we have
|E(XY )| 6 a2E(X2)

2
+ E(Y 2)

2a2
. We also have |E(XY )| 6 (E(X2))1/2(E(Y 2))1/2.

Proof. For the first inequality, we first note (aX − 1
a
Y )2 = a2X2 + Y 2

a2
− 2XY > 0 (it is

non-negative because it is the square of something). Thus, XY 6 a2X2

2
+ Y 2

2a2
. Now, take

expectations to get E(XY ) 6 a2E(X2)
2

+ E(Y 2)
2a2

. In the case where E(XY ) > 0, this is the
first claim. If E(XY ) < 0, use the claim after replacing X by −X . To prove the second

claim, use the first claim for a =
√

2

√
E(Y 2)√
E(X2)

. �

Lemma 2.22. Suppose p ∈ [1,∞) ∪ {∞} and suppose 1
p

+ 1
q

= 1. Then |E(XY )| 6
(E|X|p)1/p(E|Y |q)1/q. (Note that if p = q = 2, this recovers Cauchy-Schwarz.)

Proof. It suffices to instead use XY 6 ap|X|p
p

+ |Y |q
aqq

for any a > 0, take expectation, and
choose a appropriately. �

3. WEEK 3, STARTING TUE. FEB. 6, 2024

3.1. Law of the unconscious statistician. Here’s a quick trick that we introduced last
week.

Lemma 3.1. Take any function f : R→ R (piecewise continuous, say). Take any random
variable X with pmf p. Then

E[f(X)] =
∑

x:p(x)>0

f(x)p(x).

Proof. By definition, we have

E[f(X)] =
∑
w

wP[f(X) = w]

=
∑
w

w
∑

s:f(s)=w

P[X = s]

=
∑
w

∑
s:f(s)=w

wP[X = s]

=
∑
w

∑
s:f(s)=w

f(s)P[X = s]

=
∑
s

f(s)P[X = s].

�
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3.2. Continuous random variables.

Definition 3.2. A random variable X is said to be continuous if its distribution function
can be written as P(X 6 x) =

r x
−∞ p(u)du for an integrable function p. This function p

is the density or probability density function (or pdf for short).

Lemma 3.3. Suppose X has pdf p. Then

(1)
r
R p(x)dx = 1

(2) P(a 6 X 6 b) =
r b
a
p(x)dx

(3) If p is continuous, then p(x) > 0 for all x ∈ R
(4) P(X = x) = 0 for all x ∈ R

Proof. (1) P(X 6 A) =
r A
−∞ p(u)du. Now send A→∞. The LHS converges to 1.

(2) We have P(a 6 X 6 b) = P(X 6 b) − P(X 6 a) =
r b
−∞ p(u)du −

r a
−∞ p(u)du =

r b
a
p(u)du.

(3) For any ε > 0, we can pick h > 0 small enough so that |p(y) − p(x)| 6 ε for all
y ∈ [x, x + h]. In particular, for the sake of contradiction, suppose p(x) < 0 at x.
Then p(y) < 0 for all y ∈ [x, x + h] if h is small enough. But P(x 6 X 6 x + h) =r x+h

x
p(y)dy < 0 if this were to be the case, which is ridiculous.

(4) Use part (2) and the fact that the integral of any function on an interval of length 0 is
0.

�

Remark 3.4. There is the issue now of which σ-algebra to take, since R is not a finite
set. This is a delicate issue of “measure theory”, which is beyond the scope of this course
(and, to be honest, kind of besides the point of probability theory and statistics; it’s just
a necessary evil to be fully general). For the purposes of this course (and really most
situations one finds themselves in), as long as events are constructed by countable unions
and intersections of events of the form {X 6 A}, one can integrate on them.

Example 3.5. There are three “main” examples of continuous random variables that we
will be interested in. The first is the normal or Gaussian distribution. We say X ∼
N(µ, σ2) (where µ, σ ∈ R) if its pdf is

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

µ is called the “mean” (for a reason we will see shortly), and σ2 is the variance (we will
prove this shortly). We also call σ the standard deviation. (Pretend σ > 0. If σ = 0, then
X ∼ N(µ, σ2) just means X = µ with probability 1.) From this formula, it is not hard
to see that if X ∼ N(0, σ2), then X + µ ∼ N(µ, σ2) and cX ∼ N(0, c2σ2). Proving this
requires a little something, but you can take this for granted. (We will see a proof soon.)

The fact this integrates to 1 over x ∈ R is not easy to see! Let us do this really
quickly. First, it suffices to assume that µ = 0, since by change of variables, we haver
R p(u)du =

r
R p(u + µ)du for all µ ∈ R. Moreover, by change of variables u = x/σ, it

15



suffices to assume that σ = 1. So, we need to show that(
1√
2π

w ∞
−∞

e−
x2

2 dx

)2

= 1.

The LHS is equal to
1

2π

w

R2
e−

x2+y2

2 dxdy.

If we use polar coordinates r2 = x2 + y2 and dxdy = rdrdθ, we have
1

2π

w

R2
e−

x2+y2

2 dxdy =
1

2π

w 2π

0

w ∞
0
e−

r2

2 rdrdθ

=
1

2π

w 2π

0

d

dr
e−

r2

2 drdθ

=
1

2π

w 2π

0
dθ = 1.

Example 3.6. We say X ∼ U([a, b]) (or X is uniform on [a, b]) if its density function is
p(x) = 1

b−a if x ∈ [a, b], and p(x) = 0 if x 6∈ [a, b]. (If a = b, then this just means X = a
with probability 1.)

Example 3.7. We say X ∼ Exp(λ) if its pdf is p(x) = λe−λx for x > 0 and p(x) = 0 for
x < 0. (This is called an exponential random variable.)

Example 3.8. Here is another family of examples to keep in mind. We sayX has a power
law tail if its pdf satisfies p(x) = A(1 + x)−m for some m > 0. Note that we must take
m > 1 for this to even have finite integral on R! The bigger m is, the less likely this
random variable is going to be big.

Definition 3.9. Let X be a continuous random variable with pdf p. Take any function
f : R→ R. Its expectation is Ef(X) :=

r∞
−∞ f(u)p(u)du, provided that this integral con-

verges absolutely. Its k-th moment is EXk. Its variance is Var(X) = E(X − E(X))2 =
EX2 − (EX)2. The covariance of X, Y is still Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Example 3.10. LetX ∼ N(0, 1). Choose f(x) = x. Then Ef(X) = EX =
r∞
−∞ x

e−
x2

2√
2π
dx =

0, since the integrand is odd. In particular, this agrees with calling µ (which in this case
is 0) the mean. Next, choose f(x) = x2. How do we compute its expectation? Well, first
write

Ef(X) = EX2 =
w ∞
−∞

x2 e
−x

2

2

√
2π
dx =

w ∞
−∞

(x2 − 1)
e−

x2

2

√
2π
dx+ 1.

One can verify directly that (x2 − 1)e−
x2

2 = d2

dx2
e−

x2

2 = − d
dx

(xe−
x2

2 ). Thus, by the

fundamental theorem of calculus, the integral on the far RHS is 0, since xe−
x2

2 vanishes
as x→ ±∞. In general, if X ∼ N(µ, σ2), then

EX = µ, EX2 = σ2 + µ2.
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Of course, one can play a similar game to prove this, but we’ll see a much easier way to
do it. In particular, we will show that if X ∼ N(µ, σ2), then X−µ

σ
∼ N(0, 1) (provided

σ 6= 0).

Example 3.11. As this and the previous example indicate, computing expectations often
involve integration-by-parts. Let X ∼ Exp(λ). Then

EX =
w ∞

0
λxe−λxdx = −

w ∞
0
x
d

dx
e−λxdx

=
w ∞

0
e−λxdx =

1

λ
,

where the last step uses u-substitution u = λx. For the second moment EX2, we have

EX2 =
w ∞

0
λx2e−λxdx = −

w ∞
0
x2 d

dx
e−λxdx

= 2
w ∞

0
xe−λxdx =

2

λ2
,

where the last step uses our knowledge of EX = λ−1. Continuing in similar fashion, we
can compute EXk for any integer k > 0.

3.3. Independence.

Definition 3.12. Suppose that X1, . . . , Xn are continuous random variables with pdfs
p1, . . . , pn. We say they are jointly independent if for any open or closed intervals I1, . . . , In ⊆
R, we have

P (∩ni=1{Xi ∈ Ii}) =
∏
i∈I

P(Xi ∈ I) =
n∏
i=1

w

Ii
pi(x)dx.

We say they are pairwise independent if Xi, Xj are independent for all choices of i 6= j.
Again, these notions are not the same!

Lemma 3.13. Let X1, . . . , Xn be any random variables. Then they are jointly indepen-
dent if and only if for any functions f1, . . . , fn : R→ R, we have

E

[
n∏
i=1

fi(Xi)

]
=

n∏
i=1

E[fi(Xi)].

Note that in the previous lemma, the random variables do not have to be continuous!

Lemma 3.14 (Convolution formula). LetX1, X2 be independent continuous random vari-
ables with pdfs p1, p2. Then Z = X1 +X2 is a continuous random variable with pdf

p(z) =
w

R
p1(z − u)p2(u)du.

Proof. Same as in the discrete variable case. �

Lemma 3.15. Lemma 2.19 is still true if the random variables therein are continuous
random variables!
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3.4. Change of variables.

Theorem 3.16. Let X be a continuous random variable with pdf p. Let h : R → R be a
smooth, strictly monotone function. Then the random variable Y = h(X) is continuous
with pdf q given by

q(y) = p(h−1(y))

∣∣∣∣ 1

h′[h−1(y)]

∣∣∣∣ .
If F is instead strictly decreasing, then q(y) = p(−F (y))|F ′(y)|.
Proof. It suffices to show that for any A ∈ R and the proposed choice of q, we have

P(Y 6 A) =
w A

−∞
q(y)dy.

We have

P(Y 6 A) = P(F (X) 6 A) =
w

{x∈R:F (x)6A}
p(x)dx.

Since F is strictly increasing, we know that F is invertible, and the set {x ∈ R : F (x) 6
A} is equal to [−∞, F−1(A)]. Thus,

P(Y 6 A) =
w F−1(A)

−∞
p(x)dx.

Now, make the change of variables u = F−1(x), i.e. x = F (u). We have dx = F ′(u)du.
Moreover, this change of variables sends [−∞, F−1(A)] to [−∞, A]. Thus,

P(Y 6 A) =
w A

−∞
p(F (u))F ′(u)du.

�

Example 3.17. Suppose X is uniform on [0, 1], and h(x) = − log x. This is smooth on
x > 0 and strictly decreasing. Its inverse is h−1(x) = e−x. Its derivative is h′(x) = − 1

x
.

So, the previous theorem tells us how to compute the distribution of h(X); it turns out to
be Exp(1)! (This is on the HW.)

Example 3.18. This is one of the first ways we are taught how to sample from a distribu-
tion. Suppose X has pdf p. Recall F (x) =

r x
−∞ p(u)du. To find its inverse, we need to

know, given any x ∈ [0, 1], for what value c is F (c) =
r c
−∞ p(u)du = x. This c(x) func-

tion is known as a quantile of x. In general, closed forms for quantiles are not available.
Nevertheless, it turns out that F (X) is uniform on [0, 1] anyway; this is on the HW.

Example 3.19. Suppose X ∼ N(0, σ2). We claim that X + µ ∼ N(µ, σ2). To see this
rigorously, note X + µ = h(X), where h(x) = x + µ. Its derivative is h′(x) = 1, and
its inverse is h−1(x) = x − µ. Thus, the previous formula says that the pdf of X + µ is
p(x − µ), where p is the pdf for N(0, 1). But p(x − µ) is the pdf for N(µ, 1). Similarly,
one can use the function h(x) = σx to show that σX ∼ N(0, σ2).

3.5. Random vectors.

Definition 3.20. LetX1, . . . , Xn be continuous random variables, so that X = (X1, . . . , Xn)
is a random vector in Rn. The pdf of X is the function p(x1, . . . , xn) such that for any
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open or closed subset E ⊆ Rn, we have

P(X ∈ E) =
w

E
p(u1, . . . , un)du1 . . . dun.

Now, suppose X1, . . . , Xn are discrete random variables. The pmf of X is the function
p(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

Finally, if X1, . . . , Xj are continuous and Xj+1, . . . , Xn are discrete, then the density
function of X is defined as follows (in which E ⊆ Rj is any open or closed set):

P((X1, . . . , Xj) ∈ E,Xj+1 = xj+1, . . . , Xn = xn) =
w

E
p(x1, . . . , xj, xj+1, . . . , xn)dx1 . . . dxj.

Example 3.21. SupposeX1, . . . , Xn are independent with pdfs p1, . . . , pn. Then p(x1, . . . , xn) =∏n
i=1 p(xi). Indeed, for any E = E1 × . . . × En where E1 ⊆ R are open or closed, by

independence, we have

P(X ∈ E) = P(∩ni=1{Xi ∈ Ei}) =
n∏
i=1

P(Xi ∈ Ei).

Now, for any open or closed E ⊆ Rn, we can always approximate E by a disjoint union
of rectangles. This requires some work, but it can be done. This example applies to
continuous or discrete random variables.

Definition 3.22. LetX1, . . . , Xn be continuous random variables, so that X = (X1, . . . , Xn)
has pdf p(x1, . . . , xn). For any function f : Rn → R, the expectation of f is

Ef(X1, . . . , Xn) =
w

Rn
f(x1, . . . , xn)p(x1, . . . , xn)dx1 . . . dxn.

If X1, . . . , Xn are instead discrete and X has pmf p(x1, . . . , xn), then

Ef(X1, . . . , Xn) =
∑

(x1,...,xn)

f(x1, . . . , xn)p(x1, . . . , xn).

Suppose X1, . . . , Xj are continuous and Xj+1, . . . , Xn are discrete. Then

Ef(X1, . . . , Xn) =
w

Rj

∑
(xj+1,...,xn)

f(x1, . . . , xj, xj+1, . . . , xn)p(x1, . . . , xj, xj+1, . . . , xn)dx1 . . . dxj.

Example 3.23. Suppose X1, X2 are continuous pdfs such that X1 = X2, and X1, X2

have pdf p. Then the pdf of X is a little funny; it has the form p(x1, x2) = p(x1)“δx1=x2”.
This δx=y vanishes whenever x 6= y, and it reduces to integration only when x = y. In
particular, for any E ⊆ R2, let E1 be the set of all x ∈ R for which (x, x) ∈ E. Then we
have

P(X ∈ E) =
w

E
p(x, y)δx=ydxdy =

w

E1

p(x)dx.

This example is not too important, since we will never use it in this class, but I want to
mention it just to let you know that things can be a little weird if one is too reckless and
does not throw out complete redundancies in X.

3.6. Multivariate Gaussians.
Definition 3.24. Recall that a square matrix is positive definite if it is real symmetric and
all its eigenvalues are strictly positive.
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We say a random vector X ∈ Rn is a multivariate Gaussian, written as X ∼ N(m,Σ)
(where m = (m1, . . . ,mn) ∈ Rn and Σ is a positive-definite matrix of dimension n×n),
if its pdf is given by (for x = (x1, . . . , xn))

p(x) =
1√

det(2πΣ)
exp

{
−(x−m) · Σ−1(x−m)

2

}
Because Σ is positive definite, it is invertible.

Example 3.25. Let X1, . . . , Xn are independent N(mi, σ
2
i ) for i = 1, . . . , n. Then X =

(X1, . . . , Xn) is a multivariate Gaussian with m = (m1, . . . ,mn) and Σ diagonal with
Σii = σ2

i . Indeed, by independence, the pdf of X is
n∏
i=1

1√
2πσ2

i

e
− (xi−mi)

2

2σ2
i =

1√∏n
i=1 2πσ2

i

exp

{
−
∑n

i=1(xi −mi)σ
−2
i (xi −mi)

2

}
.

One can check that the determinant of 2πΣ is the product of its diagonal entries 2πσ2
i , and

that (x−m) ·Σ−1(x−m) =
∑

i(xi −mi)σ
−2
i (σi −mi), since the inverse of a diagonal

matrix with positive entries is the diagonal matrix given by inverting the diagonal entries.

Lemma 3.26. The pdf p(x) for N(m,Σ) is, in fact, a pdf (so that
r
Rn p(x)dx = 1.

Proof. As in the n = 1 case, one can shift u = x−m and assume m = 0. We must show
1√

det(2πΣ)

w

Rn
exp

{
−x · Σ−1x

2

}
dx = 1.

Since Σ is real symmetric with positive eigenvalues, by the spectral theorem in linear
algebra, we can write Σ = OTDO, where O is orthogonal (so OOT = OTO = I) and D
is diagonal with positive diagonal entries D1, . . . , Dn. In particular, Σ = OTD−1O and
det Σ = detD. So, the LHS of the previous display is equal to

1√
det(2πD)

w

Rn
exp

{
−Ox ·D

−1Ox

2

}
dx.

Since O is orthogonal, the change of variables u = Ox satisfies du = dx. So, the
previous display equals

1√
det(2πD)

w

Rn
exp

{
−x ·D−1x

2

}
dx =

1√
det(2πD)

w

Rn

n∏
i=1

e
− x2i

2Di dxi

=
w

Rn

n∏
i=1

1√
2πDi

e
− x2i

2Di dxi.

We used the fact that the determinant of a diagonal matrix is the product of its entries
above. The last integral is the product of integrals of pdfs of one-dimensional Gaussians,
which are all 1, so the proof is complete. �

Lemma 3.27. Let X ∼ N(m,Σ).
(1) If X ∼ N(m,Σ), then X + w ∼ N(m + w,Σ) and MX ∼ N(m,M∗ΣM).
(2) For any i = 1, . . . , n, we have EXi = mi.
(3) For any i, j = 1, . . . , n, we have Cov(Xi, Xj) = Σij .
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Proof. (1) Omitted.
(2) Set Y = X −m. Then Y ∼ N(0,Σ). But the pdf for N(0,Σ) is symmetric about

the origin, so EYi = −EYi = 0. Thus, EXi = EYi +mi = mi.
(3) For notational convenience, let us assume m = (0, . . . , 0), so that EXi,EXj = 0 and

thus Cov(Xi, Xj) = EXiXj − EXiEXj . We want to show that

Σij =
1√

det(2πΣ)

w

Rn
xixjp(x)dx.

Because Σ is real symmetric and positive definite, by the spectral theorem in linear
algebra, we can write Σ = OTDO, where D is diagonal with entries D1, . . . , Dn > 0
and O is an orthogonal matrix satisfying OOT = OTO = I . So, we have Σ−1 =
OTD−1O. Moreover, we have det Σ = detD. Hence, we have

p(x) =
1√

det(2πD)
exp

{
−Ox ·DOx

2

}
.

Now, let A be the n × n matrix such that Aij = Aji = 1
2
. Then xixj = x · Ax =

Ox ·OAOTOx. Thus, we want to show

Σij =
1√

det(2πD−1)

w

Rn
Ox ·OAOTOx exp

{
−Ox ·DOx

2

}
dx.

The multivariable change-of-variables formula implies that the u-substitution u = Ox
implies du = dx. Thus, the RHS of the previous display is

1√
det(2πD−1)

w

Rn
x ·OAOTx exp

{
−x ·Dx

2

}
dx (3.1)

=
w

Rn
x ·OAOTx

n∏
i=1

1√
2πD−1

i

e−
Dix

2
i

2 dxi. (3.2)

If Z = (Z1, . . . , Zn) where Zi ∼ N(0, D−1
i ) are independent, then the previous

display is equal to the expectation of Z ·OAOTZ. It requires a linear algebra, but this
can be shown to equal (OTDO)ij = Σij .

�

4. WEEK 4, STARTING TUE. FEB. 13, 2024

4.1. Triangle inequality.

Lemma 4.1. We have |EX| 6 E|X| for any random variable X .

Proof. Suppose X is discrete. Then |EX| = |
∑

x xp(x)| 6
∑

x |x|p(x) = E|X|. If X is
continuous, we have |EX| =

∣∣r
R xp(x)dx

∣∣ 6 r
R |x|p(x)dx = E|X|. �

4.2. Laplace and Fourier transforms, i.e. moment generating functions and charac-
teristic functions.

Definition 4.2. For any random variable X , we define its Laplace transform/moment
generating function (MGF) to be the function mX(ξ) := EeξX . We define its Fourier
transform/characteristic function to be χX(ξ) := EeiξX = mX(iξ).
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Lemma 4.3. (1) IfX, Y are independent, thenmX+Y (ξ) = mX(ξ)mY (ξ) and χX+Y (ξ) =
χX(ξ)χY (ξ).

(2) We have mX(0) = χX(0) = 1.
(3) We have |χX(ξ)| 6 1 for all ξ ∈ R.

Proof. (1) We have mX+Y (ξ) = Eeξ(X+Y ) = EeξXeξY = EeξXEeξY = mX(ξ)mY (ξ).
For the other identity, use χ(ξ) = m(iξ).

(2) We have mX(0), χX(0) = Ee0X = E1 = 1.
(3) Since |eix| = 1 for all x ∈ R, we have |ξX(ξ)| = |EeiξX |. Now, by the triangle

inequality, we have |EeiξX | 6 E|eiξX | = 1.
�

Theorem 4.4 (An inversion theorem). Suppose X, Y are random variables such that
mX(ξ) = mY (ξ) for all ξ in a neighborhood of 0. Then X, Y have the same distribution,
i.e. P[X ∈ A] = P[Y ∈ A] for all open, closed, half-open, or half-closed subsets A ⊆ R.
The same is true for χ in place of m.

Example 4.5. Let X ∼ Bern(p). Then EeξX = (1 − p) + peξ. Now, suppose Y ∼
Bin(n, p). We can compute

EeξY =
n∑
k=0

(
n

k

)
pk(1− p)n−kekξ =

n∑
k=0

(
n

k

)
[peξ]k(1− p)n−k = (peξ + (1− p))n.

On the other hand, we know Y = X1 + . . .+Xn, so EeξY =
∏n

j=1 EeξXj =
∏n

j=1[peξ +

(1 − p)] = [peξ + (1 − p)]n. This is another illustration that Y = X1 + . . . + Xn for
independent Xj ∼ Bern(p).

Example 4.6. The sum of independent Gaussians is Gaussian. Let X ∼ N(0, σ2
1) and

Y ∼ N(0, σ2
2). In HW3, you showed that EeξX = e

ξ2σ21
2 and EeξY = e

ξ2σ22
2 . From this, we

know that Eeξ(X+Y ) = e
ξ2(σ21+σ

2
2)

2 . This shows that X+Y has the same Laplace transform
as N(0, σ2

1 + σ2
2). So, by the inversion theorem, we know that X + Y ∼ N(0, σ2

1 + σ2
2).

Theorem 4.7 (Another inversion theorem). Let X be a discrete random variable with
pmf p(x). Suppose f : R → C is a function that satisfies 1

2π

r
R f(ξ)e−ixξdξ = p(x) for

all x ∈ R. Then χX(ξ) = EeiξX = f(ξ). The same is true if X is a continuous random
variable with pdf p(x).

Example 4.8. On HW4, you are introduced to the Cauchy distribution, which is a con-
tinuous one with pdf p(x) = 1

π(1+x2)
. Its Fourier transform χX(ξ) is not so easy to

compute, but it turns out to equal e−|ξ| (you are asked to do this computation). It is notice-
ably easier to show that 1

2π

r
R e
−|ξ|e−ixξdξ = 1

π(1+x2)
. The inversion theorem now shows

EeiξX = e−|ξ|
2 if X is Cauchy.

4.3. How to compute moments.
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Lemma 4.9. For any random variable X and integer k > 0, we have

dk

dξk
EeξX |ξ=0 = EXk,

dk

dξk
EeiξX |ξ=0 = ikEXk.

Proof. By the chain rule, we have dk

dξk
eξX = Xk and dk

dξk
eiξX = ikXk. Now take expecta-

tion on both sides. �

Example 4.10. If X ∼ Bern(p). Then EXk = EX for all k > 0 because X is either
0 or 1. On the other hand, EeξX = (1 − p) + peξ, and eξ stays put whenever we take
derivatives.

Example 4.11. If X ∼ N(0, 1), then EeξX = e
ξ2

2 . We have d
dξ
e
ξ2

2 = ξe
ξ2

2 and d2

dξ2
e
ξ2

2 =

(ξ2 + 1)e
ξ2

2 and d4

dξ4
e
ξ2

2 = (ξ4 + 3ξ2 + 3)e
ξ2

2 , so if we set ξ = 0, we get EX = 0 and
EX2 = 1 and EX4 = 3. This is what you showed on HW3, but in an easier way!
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4.4. Some inequalities.
Lemma 4.12. Suppose X, Y are two random variables. Then for any a > 0, we have
|E(XY )| 6 a2E(X2)

2
+ E(Y 2)

2a2
. We also have |E(XY )| 6 (E(X2))1/2(E(Y 2))1/2.

Proof. For the first inequality, we first note (aX − 1
a
Y )2 = a2X2 + Y 2

a2
− 2XY > 0 (it is

non-negative because it is the square of something). Thus, XY 6 a2X2

2
+ Y 2

2a2
. Now, take

expectations to get E(XY ) 6 a2E(X2)
2

+ E(Y 2)
2a2

. In the case where E(XY ) > 0, this is the
first claim. If E(XY ) < 0, use the claim after replacing X by −X . To prove the second

claim, use the first claim for a =
√

2

√
E(Y 2)√
E(X2)

. �

Example 4.13. Given two random variables X, Y , the correlation coefficient between
them is σ(X, Y ) = Cov(X,Y )√

Var(X)Var(Y )
. Note that this does not change if we replace X, Y

by X̄ = X − EX and Ȳ = Y − EY , respectively. By Cauchy-Schwarz, we know that
|σ(X, Y )| 6 1. This means the correlation coefficient is a way to measure dependence of
X, Y on each other without their size influencing anything.

Lemma 4.14. Suppose p ∈ [1,∞) ∪ {∞} and suppose 1
p

+ 1
q

= 1. Then |E(XY )| 6
(E|X|p)1/p(E|Y |q)1/q. (Note that if p = q = 2, this recovers Cauchy-Schwarz.)

Proof. It suffices to instead use XY 6 ap|X|p
p

+ |Y |q
aqq

for any a > 0, take expectation, and
choose a appropriately. �

Lemma 4.15 (Chebyshev inequality). Let X be a random variable. Then for any p > 1

and C > 0, we have P[X > C] 6 E|X|p
Cp

.
More generally, if ϕ : R→ R is an increasing function, then P[X > C] 6 Eϕ(X)

ϕ(C)
.

This is sometimes called Markov’s inequality if p = 1. Although the first claim is true
if p > 0, it is not useful if p < 1.

Proof. We prove the general version; for the first statement, take ϕ(x) = xp. We have

P[X > C] 6 P[ϕ(X) > ϕ(C)] = E1ϕ(X)>ϕ(C) 6 E1ϕ(X)>ϕ(C)
ϕ(X)

ϕ(C)
.

Since ϕ(X)/ϕ(C) > 1, we can drop the indicator for an upper bound. �

Recall that a function f : R → R is convex if f ′′(x) > 0 for all x. Equivalently, for
any t ∈ [0, 1] and x, y ∈ R, we have f(tx + (1 − t)y) 6 tf(x) + (1 − t)f(y). (In
words, the graph of f sits below its tangent line.) By inducting on the number of points,
we can show that for any x1, . . . , xn and p1, . . . , pn such that p1 + . . .+ pn = 1, we have
f(
∑n

i=1 pixi) 6
∑n

i=1 pif(xi).

Lemma 4.16 (Jensen’s inequality). Take any random variableX and any convex function
f . We have f(EX) 6 Ef(X).

Proof. If X is a discrete random variable, then f(EX) = f(
∑

x xp(x)). By convexity,
this is 6

∑
x f(x)p(x) = Ef(X). If X is a continuous random variable, one has to use

an approximation argument (which we omit). �
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4.5. Some applications of these inequalities.

Lemma 4.17. For any random variable X and p > 1, we have |EX|p 6 E|X|p.

Proof. We give two proofs. First, note that f(x) = |x|p if convex if p > 1. (It suffices
to prove this for x > 0 since f(x) = f(−x). Now compute f ′′(x) = p(p − 1)xp−2 for
x > 0, which is non-negative if p > 1.) Thus, we can now use Jensen. The second proof
is based on Hölder. Let Y = 1 be the constant random variable, so that |EX| = |EXY | 6
(E|X|p)1/p(E|Y |q)1/q = (E|X|p)1/p. Now raise both sides of this inequality to the p-th
power. �

Lemma 4.18 (“Reverse Hölder inequality). Suppose f is concave, i.e. −f is convex.
Then f(EX) > Ef(X). For example, log |EX| > E log |X|.

Proof. By Jensen, we know −f(EX) 6 −Ef(X), so by taking negatives, we conclude
the first claim. The second follows by noting that x 7→ log |x| is concave (take x > 0 and
take two derivatives). �

4.6. The Law of Large Numbers.

Theorem 4.19. Let X1, . . . , XN be independent random variables such that EXj = 0 for
all j = 1, . . . , N . Define Y = N−1

∑N
j=1Xj . Then for any ε > 0, we have

P[|Y | > ε] 6

∑N
j=1 E|Xj|2

N2ε2
6

1

Nε2
sup

j=1,...,N
E|Xj|2.

In particular, if X1, . . . , XN have the same distribution, then P[|Y | > ε] 6 Var(X1)
Nε2

.

Proof. By Chebyshev, we have

P[|Y | > ε] 6
E|Y |2

ε2
=

1
N2

∑N
i,j=1 EXiXj

ε2
.

Since Xi, Xj are independent, we know EXiXj = EXiEXj = 0 if i 6= j. Thus, P[|Y | >
ε] 6 ε−2N−2

∑N
i=1 E|Xi|2. �

Example 4.20. If X1, . . . , XN are independent N(0, 1), then we have already shown that
Y = N−1

∑N
i=1Xi ∼ N(0, 1

N
). In this case,

P[|Y | > ε] = 2
w ∞
ε

1√
2πN−1

e−
Nx2

2 dx.

This vanishes as N → ∞ if ε > 0 is fixed. Indeed, we know that N1/2 exp[−Nx2/2] 6
Cε exp[−

√
Nx] for all x > ε if Cε > 0 is sufficiently large depending only on ε. But

the integral of exp[−
√
Nx] from x = ε to x = ∞ is 6 exp[−

√
Nε], which vanishes as

N →∞.

Example 4.21. Let X1, . . . , XN be Cauchy random variables (independent!), i.e. contin-
uous with pdf p(u) = 1

π(1+u2)
for u ∈ R. You will show on HW4 that Y = N−1

∑N
i=1Xi

is also Cauchy for all N . Thus, the law of large numbers does not apply! Why?
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5. WEEK 5, STARTING TUE. FEB. 19, 2024

5.1. Just a reminder. These notes are not designed to be a substitute for lecture; they’re
more or less meant to help organize my thoughts for class, and in case anybody finds them
helpful. In particular, these notes do not cover every detail said in class. Also, it means
that typos may or may not be corrected even after lecture.

5.2. Random vectors.

Definition 5.1. A discrete random vector of dimension (or length) n is a vector X ∈ Rn

such that X = (X1, . . . , Xn) and X1, . . . , Xn are discrete random variables. Its probabil-
ity mass function p : Rn → R is defined by

p(x1, . . . , xn) = P[X = (x1, . . . , xn)], (x1, . . . , xn) ∈ Rn.

A continuous random vector of dimension (of length) n is a vector X ∈ Rn such that
X = (X1, . . . , Xn) and X1, . . . , Xn are continuous random variables. Its probability
density function p : Rn → R is defined by the following, in which U ⊆ Rn is an arbitrary
open set:

P[X ∈ U ] =
w

U
p(x1, . . . , xn)dx1 . . . dxn.

Lemma 5.2. (1) If X1, . . . , Xn are independent discrete random variables with pmfs
p1, . . . , pn, then X = (X1, . . . , Xn) is a discrete random vector with pmf p(x1, . . . , xn) =∏n

i=1 pi(xi).
(2) The same is true if we have continuous random variables, and pmf is replaced by pdf.

Proof. (1) For any x1, . . . , xn ∈ R, by independence, we have P[X1 = x1, . . . , Xn =
xn] =

∏n
i=1 P[Xi = xi] =

∏n
i=1 pi(xi).

(2) Take any open set of the form U = (a1, b1) × . . . × (an, bn). By independence, we
have

P[X ∈ U ] = P[X1 ∈ (a1, b1), . . . , Xn ∈ (an, bn)] =
n∏
i=1

P[Xi ∈ (ai, bi)]

=
n∏
i=1

w bi

ai
pi(xi)dxi =

n∏
i=1

w

R
1xi∈(ai,bi)pi(xi)dxi

=
w

Rn

(
n∏
i=1

1xi∈(ai,bi)pi(xi)

)
dx1 . . . dxn

=
w

U

n∏
i=1

pi(xi)dx1 . . . dxn.

�

Example 5.3. Let X ∼ Pois(λ) and Y = X . Then X = (X, Y ) is a random vector
whose pmf is p(x, y) = 1x=ypPois(λ)(x).
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Example 5.4. Let us define the function

p(x, y) =



1
4

(x, y) = (0, 0)
1
4

(x, y) = (0, 1)
1
4

(x, y) = (1, 0)
1
4

(x, y) = (1, 1)

0 else

This describes two Bernoulli random variables whose distribution is a little unclear. If we
write X = (X, Y ) as a random vector with this pdf, then we have

EX =
∑
x,y

xp(x, y) = p(1, 0) + p(1, 1) =
1

2
.

A similar computation shows that EY = 1
2
. Thus, we know that X, Y ∼ Bern(1

2
). What

is their covariance? In particular,

E(XY )− EXEY =
∑
x,y

xyp(x, y)− 1

4
= p(1, 1)− 1

4
= 0.

One can actually show that X, Y are independent. I will leave that as an exercise. On the
other hand, we can also consider the pdf

p(x, y) =



1
2

(x, y) = (0, 0)

0 (x, y) = (0, 1)

0 (x, y) = (1, 0)
1
2

(x, y) = (1, 1)

0 else

In this case, one can also show that EX = EY = 1
2
, so that X, Y ∼ Bern(1

2
). But, it is

clear that X = Y , so they are not independent.

Example 5.5. Let Y ∼ N(X, 1), where X is some continuous random variable. If we
condition on X = x, then Y ∼ N(x, 1). In particular, Y has a random mean given by X .
Then X = (X, Y ) is a continuous random vector. Its pdf is given by

p(x, y) = pX(x)× 1

[2π]1/2
exp

{
−(y − x)2

2

}
.

5.3. Conditional expectation.

Definition 5.6. Let X = (X1, . . . , Xn) be a discrete random vector. The conditional
expectation of f(X) given Xi1 , . . . , Xik is defined to be the function (here, f : R→ C is
any function)

(xi1 , . . . , xik) 7→ E[f(X)|Xi1 = xi1 , . . . , Xik = xik ]

=
∑
xj∈R

j 6∈{i1,...,ik}

f(x1, . . . , xn)
p(x1, . . . , xn)∑

xj∈R
j 6∈{i1,...,ik}

p(x1, x2, . . . , xn)
.

27



This is a function of the random variables Xi1 , . . . , Xik , so we will often just write
E[f(X)|Xi1 , . . . , Xik ]. The idea is to take expectation with respect to the probability
measure obtained by conditioning on the value of Xi1 , . . . , Xik . If X is instead continu-
ous, then

(xi1 , . . . , xik) 7→ E[f(X)|Xi1 = xi1 , . . . , Xik = xik ]

=
w

xj∈R
j 6∈{i1,...,ik}

f(x1, . . . , xn)
p(x1, . . . , xn)r

xj∈R
j 6∈{i1,...,ik}

p(x1, x2, . . . , xn)
∏

j 6∈{i1,...,ik} dxj

∏
j 6∈{i1,...,ik}

dxj

Lemma 5.7. (1) Suppose f(X) = f(Xi1 , . . . , Xik), i.e. f depends only on Xi1 , . . . , Xik .
Then E[f(X)|Xi1 , . . . , Xik ] = f(Xi1 , . . . , Xik). In particular, conditional expecta-
tion does nothing to functions that depend only on what we condition on. More gener-
ally, for any other function g, we have E[f(X)g(X)|Xi1 , . . . , Xik ] = f(X)E[g(X)|Xi1 , . . . , Xik ].

(2) We have E[f(X)+g(X)|Xi1 , . . . , Xik ] = E[f(X)|Xi1 , . . . , Xik ]+E[g(X)|Xi1 , . . . , Xik ]
and E[cf(X)|Xi1 , . . . , Xik ] = cE[f(X)|Xi1 , . . . , Xik ] for any c ∈ R deterministic.

(3) All of the lemmas (like Hölder, Cauchy-Schwarz, Jensen, etc.) hold for conditional
expectation.

(4) (Law of iterated/total expectation). We have

E {E[f(X)|Xi1 , . . . , Xik ]} = E[f(X)].

(5) Suppose f(X) = f(Xj1 , . . . , Xj`), and Xj1 , . . . , Xj` are each jointly independent of
Xi1 , . . . , Xik . Then E[f(X)|Xi1 , . . . , Xik ] = E[f(X)].

Example 5.8. Recall the first example with independent Bernoulli’s. For any function
f : R → R, we have E[f(X)|Y ] = E[f(X)] by point (5) in the lemma. On the other
hand, take the second example with identical Bernoulli’s. In this case, for any function
f : R→ R, we have E[f(X)|Y ] = E[f(Y )|Y ] = f(Y ) by point (1) in the lemma. Now,
if you had a pair of Bernoulli’s such that X = Y with probability q and X 6= Y with
probability 1 − q, then E[f(X)|Y ] = qf(Y ) + (1 − q)f(Z(Y )), where Z(Y ) = 0 if
Y = 1 and Z(Y ) = 1 if Y = 0.

Example 5.9. Recall the Gaussian example, where Y ∼ N(X, 1). We have E[Y |X] = X ,
since the mean of Y is X (which is deterministic once we condition on it). By the law of
iterated expectation, we can also compute E[Y ] = E{E[Y |X]} = EX .

5.4. Martingales.

Definition 5.10. Suppose (Xn)n>1 is a sequence of random variables. We say the se-
quence (MN)N>0 is a martingale with respect to the filtration generated by (Xn)n>1 if:
• For any N > 0, we have that MN is a function of X1, . . . , XN only.
• For any N > 0, we have E[MN+1|X1, . . . , XN ] = MN .
In the case where N = 0, then we identify X1, . . . , XN with the empty set.

Lemma 5.11. Suppose MN is a martingale with respect to the filtration generated by
(Xn)n>1. Then EMN = M0 for any deterministic time.

Proof. We have E[MN ] = E{E[MN |X1, . . . , XN−1]} = EMN−1. If we proceed induc-
tively, we conclude. �
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Example 5.12 (Symmetric simple random walk). Suppose Xn
i.i.d.∼ Bern(1

2
), and define

Yn = 1 if Xn = 1 and Yn = −1 if Xn = 0. In other words, we have Yn = (−1)1+Xn .
Then the sequence MN = Y1 + . . .+ YN (with M0 = 0, though this initial value does not
matter) is a martingale with respect to the filtration generated by X1, . . . , XN . To check
this, we first note that MN is clearly a function of just X1, . . . , XN . Next, we have

E[MN+1|X1, . . . , XN ] = E[MN + YN+1|X1, . . . , XN ]

= E[MN |X1, . . . , XN ] + E[YN+1|X1, . . . , XN ]

= MN + E[YN+1] = MN .

Example 5.13 (Biased simple random walk). Suppose now that Xn
i.i.d.∼ Bern(p) for

p 6= 0, 1
2
, 1. Define Wn = Xn − p. Then MN = W1 + . . .+WN is a martingale as well.

Definition 5.14. Consider a sequence of random variables (Xn)n>1. A stopping time is a
random variable τ valued in non-negative integers such that for any n > 0, if we condition
on X1, . . . , Xn, then the indicator function 1τ6n is deterministic.

Example 5.15. Take either simple random walk model. For any subset A ⊆ R, the
random variable τ = inf{N > 0 : MN ∈ A} is a stopping time. Indeed, if we condition
on X1, . . . , XN , then we know MN , and in particular, we know if τ 6 N or not.

On the other hand, if we let τnot be the last time that MN ∈ [−10, 10], for example,
this is not a stopping time. Indeed, if we condition on X1, . . . , XN , we do not know if
τnot 6 N ; this would imply some knowledge about the future.

Theorem 5.16 (Doob’s optional stopping theorem). LetMN be a martingale with respect
to a filtration generated by (Xn)n>1, and suppose τ is a stopping time such that at least
one of the following hold:

• τ 6 C for some deterministic constant C > 0 with probability 1.
• We have supN6τ |MN | <∞.
• Eτ <∞ and supN6τ |MN+1 −MN | <∞.

Then the process MN∧τ := Mmin(N,τ) is a martingale with respect to the same filtration,
and EMτ = M0.

Example 5.17. Take the symmetric simple random walk (and assume MN = 0). Let τ
be the first time that MN = −a or MN = b (where a, b > 0 are deterministic integers).
This is a stopping time as we explained earlier. Moreover, |MN | 6 max(a, b) =: a ∨ b
for all N 6 τ . Thus, by Doob’s optional stopping, we know that MN∧τ is a martingale.
In particular, for any N > 1, we have EMN∧τ = EM0 = 0.

Now, here comes a little finessing. We claim that as we send N →∞, then EMN∧τ →
EMτ . This is true even for the biased simple random walk. To see this, note that
|EMN∧τ − EMτ | 6 supk6τ |Mk|P[τ > N ] 6 CP[τ > N ] for some C > 0. But if
τ > N , then there cannot be an occurrence of a + b up steps in the M process before
time N (one can argue with down steps as well). The occurrence of a + b up steps in a
sequence of a+ b many total steps happens with strictly positive probability, say q. Thus,
the probability that τ > N is at most qN/(a+b). This goes to 0 as N → ∞. Thus, we
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deduce EMN∧τ − EMτ → 0 as N →∞. Ultimately, we get EMτ = 0. Now, note

EMτ = bP[Mτ = b]− aP[Mτ = −a] = 0.

Also, P[Mτ = b] = 1 − P[Mτ = −a]. From this, we get P[Mτ = −a] = b
b+a

. Note that
as b → ∞, this approaches 1. Make sure this makes intuitive sense! Also, why does this
argument break down for the biased simple random walk?

5.5. A little fun fact about Gaussian tail probabilities.

Lemma 5.18. A random variable X satisfies P[|X| > C] 6 exp{−KC2} for all C > 0
(for some constant K > 0) if and only if E|X|2q 6 C1(2q − 1)!!Cq

2 for all q > 1, where
C1, C2 > 0 are fixed constants. Moreover, we have C2 6 K−1.

Proof. We prove one direction; the other is on the HW (it is spelled out; actually, one
can even assume P[|X| > C] 6 L exp{−KC2} for some constant L > 0). Suppose
that E|X|2q 6 C1(2q − 1)!!Cq

2 for all q > 1, where C1, C2 > 0 are fixed constants. By
Chebyshev, we have

P[|X| > C] 6 e−λC
2Eeλ|X|2 ,

where λ > 0 will be chosen shortly. By Taylor expansion, we have

Eeλ|X|2 =
∞∑
k=0

λkE|X|2k

k!
6 C1

∞∑
k=0

(2k − 1)!!λkCk
2

k!
.

This is 6 Eeλ|Z|2 , where Z ∼ N(0, σ2
C2

) is a Gaussian of variance depending on C2. A
simple integration (see me in office hours if you want to have this spelled out) shows that
this is finite if λ is sufficiently small depending only on C2. �

5.6. Azuma’s inequality and Doob’s maximal inequality.

Lemma 5.19. Suppose that MN is a martingale with respect to a filtration generated by
(Xn)n>1. Suppose that supN>0 |MN+1−MN | 6 C for some deterministic C <∞. Then
there exists K > 0 such that for any ε > 0, we have

P [|MN | > ε] 6 exp

{
−Kε

2

NC2

}
.

In particular, we have E|MN |2q 6 C1(2q−1)!!N qCq
2 for all q > 1 and for some constants

C1, C2 > 0.

Lemma 5.20. Suppose that MN is a martingale with respect to a filtration generated
by (Xn)n>1. Let ZN := max06k6N |MN |. Then for any p > 1, we have E|ZN |p 6
( p
p−1

)pE|MN |p.

Both inequalities require the martingale structure and, in particular, the use of an ap-
propriate stopping time! We will see these next week.
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6. WEEK 6, STARTING TUE. FEB. 26, 2024

6.1. Proof of Azuma’s martingale inequality. Assume that N > 2. By the Chebyshev
inequality, we have

P[MN > ε] 6 e−λεE exp[λMN ] = e−λεE{exp(λMN−1)E[eλ(MN−MN−1)|X1, . . . , XN−1]}.
By Taylor expansion, as long as λ is bounded above in absolute value independently of
N , we have

eλ(MN−MN−1) 6 1 + λ(MN −MN−1) + λ2KC |MN −MN−1|2

6 1 + λ(MN −MN−1) + λ2KCC
2.

We get E[eλ(MN−MN−1)|X1, . . . , XN−1] 6 1 + λ2KCC
2 6 exp[λ2KCC

2]. Thus,

e−λεE exp[λMN ] 6 e−λεeλ
2KCC

2E exp[λMN−1].

Continuing inductively, we get

P[MN > ε] 6 e−λεeNλ
2KCC

2

.

Now, choose λ = ε
LN

, where L is a large constant depending only on C such that
L > 10KCC

2, for example. On the other hand, if MN is a martingale, then −MN is
a martingale, so the same argument shows

P[MN 6 −ε] 6 e−λεeNλ
2KCC

2

.

Thus, by a union bound, we have

P [|MN | > ε] 6 P[MN > ε] + P[MN 6 −ε] 6 2 exp

{
−Kε

2

NC2

}
.

On the HW, you showed that this implies the moment bounds in Lemma 5.18. Lemma
5.18 then implies the previous estimate but without the 2 on the RHS. �

6.2. Proof of Doob’s maximal inequality. We will assume that M0 = 0; otherwise, just
replace MN by MN −M0. Fix t > 0, and let τt := inf{k > 0 : |Mk| > t} ∧ N be the
minimum of N and the first time k that |Mk| > t. Note that the event {ZN > t} is equal
to the event {|Mτ | > t}. Thus,

P[ZN > t] = P[|Mτ | > t] 6
E[1|Mτ |>t|Mτ |p]

tp
.

Note that if Mk is a martingale, then |Mk|p = |E[M`|X1, . . . , Xk]|p 6 E[|M`|p|X1, . . . , Xk]
for all k 6 ` by Jensen. Apply this to Mk = Mτ∧k, which is a martingale by Doob’s op-
tional stopping. We deduce

E[1|Mτ |>t|Mτ |p] 6 E[1|Mτ |>t|MN |p].
This proves, for any p, that

P[ZN > t] 6 t−pE[1|Mτ |>t|MN |p] = t−pE[1ZN>t|MN |p].
We now need a lemma. It is very similar to the layer cake formula from towards the
beginning of the semester.
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Lemma 6.1. Let X be a random variable. Then for any q > 1, we have

E[|X|q] = q
w ∞

0
tq−1P[|X| > t]dt.

Proof. We focus on the case where X is a continuous random variable, since the discrete
random variable case was on the HW. By definition, we have

E[|X|q] =
w

R
|x|qp(x)dx =

w ∞
0
xqp(x)dx+

w ∞
0
xqp(−x)dx.

Now, write p(x) = − d
dx

r∞
x
p(u)du. Using this and integration-by-parts, we have

w ∞
0
xqp(x)dx =

w ∞
0
qxq−1

w ∞
x
p(u)du.

By the same token, if we write p(−x) = − d
dx

r −x
−∞ p(u)du, we have

w ∞
0
xqp(−x)dx =

w ∞
0
qxq−1

w −x
−∞

p(u)du.

But, notice that
r∞
x
p(u)du+

r −x
−∞ p(u)du = P[X > x] +P[X 6 −x] = P[|X| > x]. The

claim now follows. �

Now, given the layer cake formula and the probability bound from before, we have

E[|ZN |p] = p
w ∞

0
tp−1P[ZN > t]dt

6 p
w ∞

0
tp−2E[|MN |1ZN>t]dt.

By Hölder, we have E[|MN |1ZN>t] 6 (E[|MN |p])
1
pP[ZN > t]

p
p−1 6 (E[|MN |p])

1
pP[ZN >

t], where the last bound follows because probabilities are valued in [0, 1], and p
p−1
> 1 for

all p > 1. Thus,

E[|ZN |p] 6 (E[|MN |p])
1
pp

w ∞
0
tp−2P[ZN > t]dt

=
p

p− 1
(E[|MN |p])

1
pE|ZN |p−1.

Again, by Hölder, we have E|ZN |p−1 6 (E|ZN |p)
p−1
p . Moving this to the LHS of the

previous inequality and raising both sides to the p-th power finishes the proof. �

7. WEEK 7, STARTING TUE. MAR. 19, 2024

7.1. Convergence in distribution.

Definition 7.1. Let X be a random variable. We say {Xn}∞n=1 converges in distribution
to X if for any a 6 b fixed (independent of n), we have P[a 6 Xn 6 b]→ P[a 6 X 6 b]
as n→∞.

Theorem 7.2 (Levy’s continuity theorem). The following are equivalent.
(1) {Xn}∞n=1 converges in distribution to X
(2) For any ξ ∈ R, we have EeiξXn → EeiξX .
(3) For any smooth, compactly supported function f : R → R (i.e. it is smooth and it

vanishes outside a compact subset of R), we have Ef(Xn)→ Ef(X).
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We will not prove this theorem, since it belongs to a domain of mathematics called
“Fourier analysis”, but it is very useful in probability theory. Note that f(x) = |x|p is not
compact supported for any p > 0, so that this is not really saying anything very strong.

Example 7.3. Suppose Xn = X for all n. Then Xn → X in distribution as n → ∞
clearly.

Example 7.4. Suppose Xn = Y for all n, where Y ∼ N(0, 1), and suppose X = −Y .
Note that X ∼ N(0, 1). Then clearly Xn, X take very different values for all n, but
we claim Xn → X in distribution! Indeed, since Xn ∼ N(0, 1) for every n, we have

P[a 6 Xn 6 b] = 1√
2π

r b
a
e−

u2

2 du. But this is also true for X in place of Xn, because
X ∼ N(0, 1). This example illustrates the fact that convergence in distribution, as its
name suggests, depends only on the distribution of the random variable.

Example 7.5. Suppose Xn are i.i.d. with EXn = 0 and EX2
n < ∞. Define SN =

N−1/2(X1+. . .+XN). Then the law of large numbers implies that SN → 0 in distribution.
To check this, one can use Levy’s continuity theorem; it suffices to show that for any
ξ ∈ R fixed, we have EeiξSN → Eeiξ0 = 1. To see this, we write

EeiξSN − 1 = E(eiξSN − 1)1|SN |>N−1/3 + E(eiξSN − 1)1|SN |<N−1/3 .

For the second term, note that if |SN | < N−1/3, then calculus (e.g. Taylor series) implies
|eiξSN − 1| 6 |SN | 6 N−1/3 → 0. Thus, the second term on the RHS vanishes as
N →∞. For the first term, note that |eiξSN − 1| 6 2, since |eiξSN | 6 1. Thus,

E|eiξSN − 1|1|SN |>N−1/3 6 2P(|SN | > N−1/3) 6 2N2/3E|SN |2 . 2N−1/3,

where the second-to-last bound follows by Chebyshev and the last bound follows by our
proof of the law of large numbers. Since this vanishes as N →∞, we see that |EeiξSN −
1| → 0 as N →∞, which is what we wanted.

In principle, convergence in distribution is a very weak statement; restricting to expec-
tations of smooth, compactly supported functions is a very restrictive thing to do. The
lemma below tells us when we can relax this condition in the context of moments.

Lemma 7.6. Let {Xn}∞n=1 be such that supn>1 E|Xn|p < ∞ for some fixed p > 0 and
Xn → X in distribution. Then for any 0 6 r < p, we have E|Xn|r → E|X|r and
EXr

n → EXr.

We will also not give the proof of this, because it requires a number of tools from
measure theory (i.e. material covered in Math 114), but again, it is very useful to know.

Example 7.7. Here is a counterexample illustrating why we cannot have r = p in the
previous lemma; it will not be important to understand it, but it is maybe worth at least
looking at. Let the probability space be [0, 1], and letXn(u) = n1/21u∈[0,n−1]. (Remember
that random variables are just functions on probability spaces!) We claim that Xn → 0 in
distribution. To see this, we use Levy’s continuity theorem; it suffices to show EeiξXn → 1
as n→∞. To prove this, we have

EeiξXn =
w 1

0
eiξXn(u)du =

w 1/n

0
eiξn

1/2

du+
w 1

1/n
du =

w 1/n

0
eiξn

1/2

du+ (1− n−1).
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For the first term, again note that |eiξn1/2| = 1, so the first term is 6 n−1 → 0 in absolute
value. Next, note that E|Xn|2 =

r 1

0
|Xn(u)|2du =

r 1/n

0
ndu = 1. Thus, we clearly do not

have E|Xn|2 → E02, even though supn E|Xn|2 <∞ and Xn → 0 in distribution.

7.2. Central limit theorem.

Theorem 7.8. Suppose {Xi}∞i=1 are i.i.d. random variables with EXi = 0 and EX2
i = 1.

Define SN = N−1/2(X1 + . . .+XN). Then SN → G in distribution, where G ∼ N(0, 1).

Proof. There are a number of different proofs of quite different flavor; you will see
glimpses of two in the HW. We give one based on the Fourier transform; it is clean,
but it requires the i.i.d. assumption (one does not even need independence in full gener-
ality of the CLT). For convenience, we will also assume that E|Xi|3 < ∞, though this is
not necessary and can be removed by being a lot of more tedious and careful.

By Levy’s continuity theorem, it suffices to show that for any ξ ∈ R, we have

EeiξSN → EeiξG = e−
ξ2

2 ;

the last identity was proven on an earlier HW (for ξ = −iρ with ρ ∈ R). First, by
independence, we have

EeiξSN = E
N∏
j=1

eiN
−1/2ξXj =

N∏
j=1

EeiN−1/2ξXj = χ(iN−1/2ξ)N .

(The last identity is just setting notation χ(iρ) = EeiρXj ; since Xj are i.i.d., this does not
depend on j.) Now, by Taylor expansion, we have

χ(iN−1/2ξ) = χ(0) + iN−
1
2 ξχ′(0)− 1

2
N−1ξ2χ′′(0) + E,

where

|E| 6 N−3/2|ξ|3 sup
u∈R
|χ′′′(iu)|.

It is not hard to see that χ(0) = Ee0 = 1 and χ′(0) = EXj = 0 and χ′′(0) = EX2
j = 1 and

χ′′′(iu) = −iEX3
j e

iuXj . By assumption on the third moment and by using |eiuXj | = 1,
we get |χ′′′(iu)| <∞. Thus, we have

EeiξSN =

(
1− 1

2
N−1ξ2 +O(N−3/2|ξ|3)

)N
,

where O(·) means something which is bounded above by some constant times ·. It is now
standard calculus to check that (since N−3/2 � N−1) EeiξSN → e−

1
2
ξ2 as N →∞. �

Corollary 7.9. We checked in the law of large numbers proof that supN>1 E|SN |2 < ∞.
Thus, we have E|SN |r → E|G|r for any 0 6 r < 2 and ESrN → EGr for any 0 6 r < 2;
here G ∼ N(0, 1).

Example 7.10. Let Xi ∼ Bern(1
2
) be i.i.d., and define SN = X1 + . . . + XN . We

expect that SN is about size N up to some constant. So, here is a reasonable question.
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Approximate

P
[

1

2
N + aN1/2 6 SN 6

1

2
N + bN1/2

]
,

where 0 6 a 6 b. Clearly, this is the same as

P
[
2a 6

2SN −N
N1/2

6 2b

]
.

Now, note that 2SN−N = (2X1−1)+. . .+(2XN−1). Moreover, note that Yj = 2Xj−1
satisfies EYj = 0 and EY 2

j = 1. Thus, the CLT says that N−1/2(2SN −N) → G, where
G ∼ N(0, 1). In particular, the previous probability converges to P[2a 6 G 6 2b] =
r 2b

2a
1√
2π
e−

u2

2 du, which although is not obvious to compute in general, is much easier.

7.3. Lindeberg exchange method. Here is another proof of the CLT. Take any smooth,
compactly supported function f : R→ R. The setting is the following.

• {Xi}∞i=1 are i.i.d. random variables with EXi = 0 and EX2
i = 1 and E|Xi|3 <∞.

• SN = N−1/2(X1 + . . . XN).
• {Gi}∞i=1 are i.i.d. N(0, 1). Everything is independent from {Xi}∞i=1.
• ZN = N−1/2(G1 + . . .+GN).
• Define YN = N−1/2(G1 +X2 + . . .+XN); it is SN but X1 is swapped with G1.

The idea of this method is a little odd, as in it is a little weird that it works but it turns out
to be very useful. It also says more than the CLT, though we discuss this point later. We
aim to show

|Ef(SN)− Ef(YN)| 6 CN−3/2.

In words, the price to exchange X1 for G1 is order N−3/2 at most. (Actually, if EX3
i = 0,

then it is at most orderN−2. If EX4
i = 3, then it is at most orderN−5/2; the more moments

one matches with those of N(0, 1), the better this price becomes, at least for the buyer.)
To see why this is useful, we can then replace X2 by G2 for a price of 6 CN−3/2, and so
forth, eventually replacing SN by ZN for a total cost of 6 N ×CN−3/2 = CN−1/2 → 0.
But ZN ∼ N(0, 1), so the CLT follows.

To prove the bound in the previous display, we Taylor expand:

f(SN) = f(YN) +N−1/2(X1 −G1)f ′(YN) +
1

2
N−1(X1 −G1)2f ′′(YN) +O(N−3/2).

Next, upon setting ỸN = N−1/2(X2 + . . .+XN), we have

N−1/2(X1 −G1)f ′(YN) = N−1/2(X1 −G1)f ′(ỸN) +N−1G1(X1 −G1)f ′′(ỸN) +O(N−3/2).

Taking expectation and using independence and EX1 = 0 and EG2
1 = 1, we have

EN−
1
2 (X1 −G1)f ′(YN) = −N−1EG2

1f
′′(ỸN) = N−1Ef ′′(ỸN).
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Next, we also have
1

2
N−1(X1 −G1)2f ′′(YN) =

1

2
N−1(X1 −G1)2f ′′(ỸN) +O(N−3/2)

=
1

2
N−1(X2

1 +G2
1)f ′′(ỸN)−N−1X1G1f

′′(ỸN) +O(N−3/2).

We again take expectation and use independence and EX1 = 0 and EX2
1 = 1 and EG2

1 =
1 to get

1

2
N−1E(X1 −G1)2f ′′(YN) = N−1Ef ′′(ỸN) +O(N−3/2).

Putting everything together, we get the desired bound. Now, note that this argument is not
just giving the CLT; it is saying that one can essentially replace Xj individually with any
Aj such that EAj = 0 and EA2

j = 1 and E|Aj|3 <∞. Using the same argument, one can
also prove the following (the multivariable CLT).

Theorem 7.11. Let {Xi}∞i=1 be i.i.d. random vectors in Rd such that the entries are
i.i.d. and satisfy EXi(j) = 0 and EXi(j)

2 = 1 (and E|Xi(j)|3 < ∞, though this is not
crucial).

Define SN = N−1/2(X1 + . . . + XN). For any smooth, compactly supported function
f : Rd → R, we have Ef(SN) → Ef(G), where G ∼ N(0, Idd) is a d-dimensional
Gaussian, i.e. its components are independent N(0, 1).

The idea is to replace the entries of each Xi one by one; one accumulates now dN many
errors of the form O(N−3/2). The independence of the entries of X is also unnecessary.
In general, define the d× d covariance matrix

Σjk = EXi(j)Xi(k).

Since Xi are i.i.d., this does not depend on i. Then, if we drop the independence of entries
assumption, we deduce that Ef(SN) → Ef(W), where W ∼ N(0,Σ) is a Gaussian of
dimension d with the correct covariance matrix. In particular, the CLT is really a statement
about linear algebra in some sense.

7.4. A brief word on Brownian motion.

Lemma 7.12. Suppose {X(N)}N is a sequence of random vectors in Rd, and assume that
X(N) → N(0,Σ) for some Σ in distribution. Let A be any fixed, deterministic matrix.
Then AX(N) converges to N(0,ΣA) in distribution, where ΣA is some matrix depending
on Σ,A (it is equal to AΣA∗, but this is not important).

Proof. For any compactly supported function F : Rd → R, we can consider the com-
pactly supported function FA : Rd → R given by FA(x) = F (Ax). Now, we have

EF (AX(N)) = EFA(X(N))→ EFA(X) = EF (AX),
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where X ∼ N(0,Σ). It suffices to show that AX ∼ N(0,ΣA). To this end, we have

EF (AG) =
w

Rd
F (Ax)

1

(2π det Σ)d/2
exp

{
−x∗Σ−1x

2

}
dx

=
w

Rd
F (y)

1

(2π det Σ detA2)d/2
exp

{
−y(AΣA∗)−1y

2

}
dy,

which is just EF (W) with W ∼ N(0,AΣA∗). �

Theorem 7.13. For each k > 1, let {Xk,i}∞i=1 be a sequence of independent random vari-
ables such that EXk,i = 0 and EX2

k,i = 0. Assume that {Xk,i}k,i are jointly independent.
Now, define a process {B(N)

k }k>0 given by B
(N)
0 = 0 and

B
(N)
k = B

(N)
k−1 +N−

1
2

N∑
i=1

Xk,i.

For any fixed integer T > 1, the vector (B
(N)
1 , . . . ,B

(N)
T ) converges to (B1, . . . ,BT ) in

distribution as N →∞, where (B1, . . . ,BT ) ∼ N(0,Σ(T )) with covariance matrix

Σ(T )j` := min(j, `).

Proof. We make another claim. For any k > 1, define Z
(N)
k := B

(N)
k − B

(N)
k−1. For

k = 0, define Z
(N)
0 = B

(N)
0 = 0. We claim that the vector (Z

(N)
1 , . . . ,Z

(N)
T ) converges in

distribution toN(0, Id), i.e. a vector (Z1, . . . ,ZT ) whose entries are independent standard
N(0, 1) Gaussians. Let us prove this first. By definition,

Z
(N)
k = B

(N)
k −B

(N)
k−1 = N−

1
2

N∑
i=1

Xk,i.

By linearity of expectation, we know EZ(N)
k = 0. We also know

E|Z(N)
k |

2 = N−1

N∑
i=1

EX2
k,i +N−1

∑
i 6=j

EXk,iXk,j = 1,

since EX2
k,i = 1 and Xk,i, Xk,j are independent mean-zero random variables. Moreover,

we know that Z(N)
1 , . . . ,Z

(N)
T are jointly independent by assumption that Xk,i are jointly

independent. Thus, by the vector-valued central limit theorem, we know (Z
(N)
1 , . . . ,Z

(N)
T )

converges in distribution to N(0, IdT ).
Let us see how this helps us conclude. We know that a linear transformation of a

Gaussian vector is another Gaussian. Since (B
(N)
1 , . . . ,B

(N)
T ) is a linear transformation of

(Z
(N)
1 , . . . ,Z

(N)
T ), we know that (B

(N)
1 , . . . ,B

(N)
T ) must converge to (B1, . . . ,BT ), which

is a Gaussian N(0,Σ(T )) for some covariance matrix Σ(T ). Here, Bk − Bk−1 = Zk
(again, with B0 = 0). The entries of this are just the covariances between entries of
(B1, . . . ,BT ). In particular, we have EBk = E

∑k
i=1 Zi = 0, and we have the following
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(without loss of generality, assume j 6 `):

Σ(T )j` = EBjB` = E

[
j∑

α=1

Zα
∑̀
β=1

Zβ

]

=

j∑
α=1

∑̀
β=1

EZαZβ =

j∑
α=1

EZ2
α = j,

where the last line follows because Zi are independentN(0, 1). Thus, we know Σ(T )j` =
min(j, `), and we are done. �

Definition 7.14. We say that a random continuous function B : [0,∞) → R has the law
of Brownian motion if B(0) = 0 and for any integer k > 1 and 0 < t1 < . . . < tk < 0,
the vector

(B(t1), . . . ,B(tk))

has distribution given by N(0,Σ[t1, . . . , tk]), where Σ[t1, . . . , tk]j` = min(tj, t`).

In principle, we do not know if Brownian motion as defined above even exists! It is
really asking for an “infinite-dimensional vector”, which is one problem on its own. We
also stipulated that the function B is continuous, which is not at all necessarily compatible
with the distribution that we require for finitely-many time samples. We will see later in
this class that both issues can be resolved.

8. WEEK 8, STARTING TUE. MAR. 26, 2024

8.1. Introduction to Markov chains.

Definition 8.1. Fix a countable set S (this is called the “state space”). We say a process
{Xn}∞n=0 is a Markov chain if it satisfies the following Markov condition:

P [Xn+1 = s|X0 = x0, . . . , Xn = xn] = P[Xn+1 = s|Xn = xn]

for all n > 0 and x0, x1, . . . , xn, s ∈ S. We say it is homogeneous or time-homogeneous
if P[Xn+1 = j|Xn = i] = P[X1 = j|X0 = i] for all n > 0 and i, j ∈ S.

Example 8.2 (Simple random walk). Fix p ∈ [0, 1], and let {Yi}∞i=1 be a sequence of
independent random variables such that P[Yi = ±1] = 1

2
. We claim that the sequence

Xn =
∑n

i=1 Yi (withX0 = 0) is a time-homogeneous with state space Z. To see this, note
that

P [Xn+1 = s|X0 = x0, . . . , Xn = xn] = P [Xn + Yn+1 = s|X0 = x0, . . . , Xn = xn]

= P [Yn+1 = s− xn|X0 = x0, . . . , Xn = xn]

= P [Yn+1 = s− xn|Xn = xn]

= P [Xn + Yn+1 = s|Xn = xn]

= P[Xn+1 = s|Xn = xn].

Intuitively, the next location of the random walk depends only on its current position,
not its past steps. It is time-homogeneous because P[Xn+1 = i|Xn = j] = P[Yn+1 =
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i − j|Xn = j] = P[Yn+1 = i − j], and this probability is independent of n > 0 since Yi
are i.i.d.

Example 8.3. Suppose that {Sn}∞n=0 is a symmetric simple random walk, and set Xn :=
|Sn|. This is a Markov chain. Here is an intuitive explanation why. Assume a > 0. If
we know that |Sn| = a, then either Sn = a or Sn = −a. If Sn = a, then it will jump
to either a− 1 or a + 1 with equal probability. In this case, we know that |Sn| will jump
to either a − 1 or a + 1 with equal probability. If Sn = −a, then it will jump to −a + 1
or −a − 1 with equal probability, and thus |Sn| will jump to either a − 1 or a + 1, again
with equal probability. On the other hand, if |Sn| = 0, so that Sn = 0, then Sn+1 must be
1 or −1, in which case |Sn+1| = 1, so that |Sn+1| is deterministic once we condition on
|Sn| = 0. The point is that conditioning on previous values |Sk| for k < n does not affect
these probabilities.

Example 8.4. Suppose we roll a fair die repeatedly. Let {Xn}∞n=0 be the largest number
rolled in the first n trials. This is a Markov chain with state space {1, . . . , 6}. To see why,
we compute

P [Xn+1 = s|X0 = x0, . . . , Xn = xn] =

{
0 s < xn
P[Xn+1 = s] s > xn

On the other hand, the same is true for P[Xn+1 = s|Xn = xn]. It is also time-homogeneous
if the rolls are independent. Indeed, P[Xn+1 = s] is independent of n > 0 in this case.

Example 8.5. Here is a process which is not Markov. Suppose there are restaurants A, B,
and C. Each night, Kevin chooses a restaurant to go to based on restaurants he has gone
to in the past. Each night, Kevin takes the restaurant he went to the previous night, looks
at the other two restaurants, and picks the one he has been to more often with probability
1/3 and the one has been to less often with probability 2/3 (if he has been to them an
equal number of times, then its 50/50).

The process of restaurants Xn ∈ {A,B,C} visited by Kevin is not Markov. Indeed, to
determine which restaurant is favorable at night n, Kevin must know all of the previous
values Xk for k < n in general. If Kevin just chose one of the two other restaurants with
equal probability every night, then it would be Markov.

Example 8.6 (Google PageRank). Here is a somewhat similar example that is Markov.
It is a very naive example of web-surfing. Suppose there are three pages on the internet,
A, B, and C. Suppose A links to both B and C, and B links to C, but C links to nothing.
Kevin is a very naive internet user. With 85% chance, Kevin will choose one of the two
links randomly and follow that link (if there are no links, Kevin will stay put). With 15%
chance, Kevin will choose a random page to visit. The process {Xn} is Markov (it is the
process of which page Kevin is one at click n), because where he ends up next depends
only on where he is now.

Of course, this is very simplistic, especially given the massive amount of webpages on
the internet. But here is a question – if Kevin surfs the internet for a very long time, where
do you think he will end up with the highest likelihood? It seems like C, since all roads
link to C, and C links to nowhere, and Kevin does not really like to not click links. How
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does one justify this more precisely? We will get to this question next week (but you will
see the idea worked out in an example of it on the HW this week).
Definition 8.7. Suppose {Xn} is a time-homogeneous Markov chain on a finite state
space S = {1, . . . , |S|}. The transition matrix P associated to this Markov chain is the
|S| × |S| matrix whose entries are given by Sij = P[X1 = j|X0 = i] for i, j ∈ S.
Lemma 8.8. Let {Xn}n>0 be a time-homogeneous Markov chain with state space S =
{1, . . . , |S|}, and let P be its transition matrix. Consider the vector v whose entries are
v

(n)
j = P[Xn = j]. Then we have v(n+1) = v(n)P . More generally, we have v(n+k) =

v(n)P k.

Proof. The second claim follows by induction in k. We prove the first claim. It suffices
to show that for any j, we have

v
(n+1)
j = (v(n)P )j =

∑
i

v
(n)
i Pij =

∑
i

P[Xn = i]P[Xn+1 = j|Xn = i].

By the law of total probability, the far RHS is just P[Xn+1 = j]. But so is the far LHS by
definition, so we are done. �

Example 8.9. Suppose I have three states, A, B, and C. At each step, I look at my current
position, and I move to one of the other two positions with equal probability. In particular,
the probability of going A → B is 1

2
and A → C is 1

2
by A → A is 0. Similarly, going

B → A is 1
2

and B → C is 1
2

and B → B is zero. Finally, we also have C → A is 1
2

and
C → B is 1

2
and C → C is zero. In this case, we have

P =

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 .

Just as a reality check, suppose initially that P[X0 = A] = 1 and P[X0 ∈ {B,C}] = 0.
What is P[X1 = s] equal to for s = B,C? We know its 1

2
, but let’s use the previous

lemma to see this. By said lemma, we know(
P[X1 = A] P[X1 = B] P[X1 = C]

)
=
(
P[X0 = A] P[X0 = B] P[X0 = C]

)
P

=
(
1 0 0

)0 1
2

1
2

1
2

0 1
2

1
2

1
2

0


=
(
0 1

2
1
2

)
.

What about X2? One can reason out that it is
(

1
2

1
4

1
4

)
, but to check this using the

lemma, note that(
P[X2 = A] P[X2 = B] P[X2 = C]

)
=
(
P[X1 = A] P[X1 = B] P[X1 = C]

)
P

=
(
0 1

2
1
2

)0 1
2

1
2

1
2

0 1
2

1
2

1
2

0


=
(

1
4

+ 1
4

1
4

1
4

)
=
(

1
2

1
4

1
4

)
.
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What aboutXn for big n? Of course, one does not want to keep multiplying matrices over
and over, especially when the dimension of the matrix is not so small. There is a trick we
will learn and use next week, but that you get a taste of on this week’s HW (in a worked
out example).

8.2. Recurrence vs. transience.

Definition 8.10. Let {Xn} be a time-homogeneous Markov chain on a countable state
space S. Let pjj(n) = P[Xn = j|X0 = j] for any j ∈ S. We say that state j is recurrent
(sometimes people use the word “persistent”) if

∞∑
n=1

pjj(n) =∞,

and we say that state j is transient if
∞∑
n=1

pjj(n) <∞.

Intuitively, recurrence means eventually returning with probability 1, and transient means
eventually stop returning.

Understanding recurrence and transience has many applications; it is a fundamental
question regarding the long-time behavior of a Markov chain (whose interest we already
came upon when looking at the PageRank example). It turns out that in the case of finite
state spaces, this question is completely resolved. Let us go into this more.

Definition 8.11. Fix a time-homogeneous Markov chain with state space S. We say a
subset I ⊆ S is closed if the probability of starting in and leaving I is 0. We say I is
communicating if for any i, j ∈ I , we have P[Xn = j|X0 = i] > 0 and P[Xm = i|X0 =
j] > 0 for some n,m. (In words, it is possible to get from i to j and vice versa in a finite
number of steps.) Note that S is always closed.

Example 8.12. In the PageRank example, the whole state space S = {A,B,C} is closed,
since there is always at least a 7.5% chance of going to any arbitrary page. However, if we
restricted Kevin to only ever follow links, then any set not containing C cannot be closed.
In particular, {A} and {A,B} are not closed, because there is a positive probability of
going to C. Also, the set {A,C} is not closed, since A → B is possible, but B → A is
impossible, so {B,C} is closed.

On the other hand, the only subset of S which is communicating is {C} if we restrict
Kevin to only follow links. For example, if {A,C} is not communicating, since going
from C to A in any finite number of steps is impossible.

Theorem 8.13. Let {Xn} be a time-homogeneous Markov chain with finite state space
S. Let I be closed and communicating. Then every i ∈ I is recurrent. Now, suppose that
for some j ∈ S and closed I ⊆ S which does not contain j, the probability of going from
j to I in finitely many steps is positive. Then j is transient.

We will not prove this now, because it requires quite a technical argument, but you are
more than allowed to use it (since this is how you get familiar with it anyways).
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Example 8.14. Back to the PageRank example with restriction to only following links,
note that A,B both have a positive probability to visit {C}, which is closed and commu-
nicating. Thus, A,B are both transient. But, C is recurrent, because {C} is closed and
communicating.

Example 8.15. Let {Xn} be a symmetric simple random walk on Z. Note that Z is
closed and communicating. Thus, if the previous theorem applied to infinite state spaces,
then every point in Z would be recurrent. This happens to be true, but not because of
the previous theorem. In particular, if Xn is an asymmetric simple random walk with
increments given by P[Yn = 1] = p and P[Yn = −1] = 1 − p for some p 6= 1

2
, then the

origin is transient. The symmetric simple random walk case will be dealt with in the next
section. The asymmetric case is on the HW (as is the case of symmetric simple random
walk in higher dimensions).

8.3. Recurrence of the symmetric simple random walk in one dimension.
Theorem 8.16. Let Xn =

∑n
i=1 Yi for n > 1 and X0 = 0, where Yi are i.i.d. and

P[Yi = ±1] = 1
2
. Then {Xn}n has 0 ∈ Z as a recurrent state, i.e.

∞∑
n=0

P[Xn = 0] =∞.

This subsection is dedicated to the proof of this result. First, we note that P[Xn = 0] if
n is odd, so that

∞∑
n=0

P[Xn = 0] =
∞∑
n=0

P[X2n = 0] = 1 +
∞∑
n=1

P[X2n = 0].

Now, we claim that

P[X2n = 0] =

(
2n

n

)
2−2n.

To prove this, note that if X2n = 0, then it must have taken exactly n steps to the
right/upwards and n steps to the left/downwards. There are exactly

(
2n
n

)
many ways

to do this, since one takes the 2n steps and just chooses which n of them are to the
right/upwards. Moreover, any particular sequence of 2n steps has probability 2−2n:

P[Y1 = s1, . . . , Y2n = s2n] =
2n∏
i=1

P[Yi = si] =
2n∏
i=1

1

2
= 2−2n,

where s1, . . . , s2n are any fixed numbers in {−1,+1}. Ultimately, we must compute
∞∑
n=0

P[X2n = 0] =
∞∑
n=0

(
2n

n

)
2−2n.

Lemma 8.17 (Stirling’s formula). For large N , we have

N ! ∼
√

2πN

(
N

e

)N
.

Here,∼means that if you divide the LHS by the RHS, the limit of the ratio is 1 asN →∞.
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Let us take this for granted for now and use it. (Though, first, let us at least see why
this formula kind of might be true, i.e. let us get a little feeling for this formula. Note that
P[X2n = 0] is the probability that a sum of i.i.d. mean zero, variance 1 random variables
is equal to 0. Now, define Z2n = (2n)−1/2X2n. We believe that Z2n → N(0, 1) by the
CLT. But the pdf of a CLT has this

√
2π in there somewhere. This explains the

√
2πN on

the RHS. The extra factor of
√
N is because the Gaussian also has the variance inside the

square root. But the variance of XN , say, is N .)
Now, we have (

2n

n

)
=

2n

n!(2n− n)!
=

2n

(n!)2

∼
√

4πn

(
2n

e

)2n

×
[

1√
2πn

( e
n

)n]2

=

√
4πn

2πn

(
2n

e

)2n ( e
n

)2n

=
1√
πn

22n.

Now, if we multiply by 2−2n, we get that(
2n

n

)
2−2n ∼ 1√

πn
,

and thus
∞∑
n=1

(
2n

n

)
2−2n ∼

∞∑
n=1

1√
πn

.

(Note that this term is just the N(0, n/2) pdf at x = 0!) To see this diverges, we use the
following test from calculus.

Lemma 8.18. We have
∞∑
n=1

n−α =

{
∞ α 6 1

finite α > 1

Proof of Stirling’s formula. Let us give a heuristic for Stirling’s formula. By taking loga-
rithms, it is enough to show

logN ! ≈ N logN −N +
1

2
log(2πN).

By log rules, we know that logN ! =
∑N

k=1 log k. We now roughly approximate
N∑
k=1

log k ≈
w N

0
log xdx.

The antiderivative of log x is x log x− x; one can just differentiate this to check it. Thus,
by the fundamental theorem of calculus, we have

N∑
k=1

log k ≈
w N

0
log xdx = (x log x− x)|Nx=0 = N logN −N.
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This is almost correct! Indeed, it is off by the term 1
2

log(2πN), which is smaller than N
or N logN as N →∞, so we are on the right track. This is the heuristic. The only thing
between the heuristic and the actual proof is getting this 1

2
log(2πN). Where could the

argument have missed this term? It must have been in the approximation of the sum of
logs by the integral. In particular, we must also account for the term

w N

0
log[x]− log(x)dx =

w N

0
log

[x]

x
dx,

where [x] is the smallest integer that is greater than or equal to x. Note that as x gets
large, we know that [x]/x converges to 1, since |[x] − x| 6 1 always. Since log 1 = 0,
we expect that the integrand gets small when x gets large. This is why when we integrate
over a domain of length N , we get something which is only logN in size! The details to
make this precise are quite heavy, but please come see me in office hours if you want to
talk about this! �

What about the asymmetric simple random walk, where there is a preference for di-
rection? In particular, let Sn = W1 + . . . + Wn, where Wi are i.i.d. and Wi = 1
with probability p and Wi = −1 with probability 1 − p, where p 6= 1

2
. Note that

EWi = p − (1 − p) = 2p − 1. By the law of large numbers and CLT, we expect
that Sn ≈ (2p − 1)n plus something which looks like N(0, Cn1/2). Thus, if S0 = 0,
then for Sn = 0 to be true for large n, we need something like Z = −(2p − 1)n, where
Z ∼ N(0, Cn1/2). But Z really does not like to be much bigger than n1/2, and n1/2 � n
for large n, so this is very unlikely, and thus the asymmetric simple random walk is tran-
sient. Of course, this is a heuristic and by no means a proof. A rigorous way to show this
is detailed in the HW.

What about the symmetric simple random walk in higher dimension d? In particular,
let X(n) = (X1(n), . . . , Xd(n)) where Xi(n) are independent symmetric simple random
walks. It turns out that for d 6 2, it is recurrent, but for d > 3, it is transient. Again,
showing this is detailed in the HW, and it follows the same line of reasoning. One way of
interpreting this is that all roads lead to Rome, but only if you cannot fly or dig...

8.4. A little interlude for some linear algebra.

Theorem 8.19 (Perron-Frobenius theorem). Let {Xn}n be a homogeneous Markov chain
with finite state space S. Let P be the associated transition matrix. Then P always has
λ = 1 as a left-eigenvalue and an associated eigenvector π

Lemma 8.20. Let M be a square matrix of size n × n. Let λ1, . . . , λn ∈ C be some
enumeration of the eigenvalues. Then TrM = λ1 + . . .+ λn and detM = λ1× . . .× λn.

Let’s see how these two results help us, with a concrete example. Take the transition
matrix

P =

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 .
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This is the Markov chain where there are three states, and at each step, one just chooses
one of the two states they are not currently at with equal probability. Note that the whole
state space is closed and communicating.

Perron-Frobenius tells us that λ1 = 1 is an eigenvalue. What about the other eigen-
values? Usually, one computes the characteristic polynomial and finds its roots, but it’s
actually easier in this case. Let’s see why. Note that TrP = 0 and

detP = −1

2
det

(
1
2

1
2

1
2

0

)
+

1

2

(
1
2

0
1
2

1
2

)
+

1

8
+

1

8
=

1

4
.

Thus, we have λ1+λ2+λ3 = 1+λ2+λ3 = 0 and λ1λ2λ3 = λ2λ3 = 1
4
. One can solve this

system of two equations in two variables, and one can check that λ2, λ3 = −1
2
. Note how

much simpler this is than finding the characteristic polynomial! Also note that λ1 = 1
and the other eigenvalues are < 1 in absolute value, in particular that 1 has multiplicity 1.

Now, let vj be the left eigenvector for λj , so that vjP = λjvj . Recall from linear
algebra that any vector can be written as a linear combination of v1,v2,v3. Also, recall
v(n) as the probability vector after n steps in the Markov chain. Write v(0) = α1v1 +
α2v2 + α3v3. We know that

v(n) = v(0)P n = α1v1P
n + α2v2P

n + α3v3P
n

= α1v1 + α2λ
n
2v2 + α3λ

n
3v3.

In particular, computing v(n) is easy, once we know what vj are. Actually, problem 2 on
the HW tells you that for large n, it’s enough to only know v1, approximately!

Let’s try another example. Take

Q =

0 1 0
1 0 0
0 0 1

 .

This is the Markov chain where one just keeps swapping between states A,B, or one just
stays put at state C. Note that there are two closed and communicating subsets of the state
space, and that the entire state space is not communicating. Again, Perron-Frobenius tells
us that λ1 = 1 is an eigenvalue. Now, note that TrQ = 1 and detQ = −1. Thus, we
know λ1 + λ2 + λ3 = 1 + λ2 + λ3 = 1 and λ1λ2λ3 = λ2λ3 = −1. One can check that
λ2 = 1 and λ3 = −1 solves this system. In particular, note that 1 has multiplicity 2 now.
This more or less follows because the number of closed, communicating subsets is 2. We
will discuss this point next week.

9. WEEK 9, STARTING TUE. APR. 2, 2024

9.1. Invariant measure and stationary distribution.

Definition 9.1. Let P be the transition matrix for a Markov chain {Xn}n with finite state
space S of sizeN . We say that a row vector π ∈ RN is an invariant measure or stationary
distribution if
• The entries πj are all non-negative, and π1 + . . .+ πN = 1.
• We have πP = π.
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Moreover, we say that P or {Xn}n is reversible with respect to π if for any i, j, we have
πiPij = πjPji.

Example 9.2. Consider a two-state Markov chain such that Pij = 1i 6=j , i.e. it jumps
between states A and B at each time. The transition matrix is

P =

(
0 1
1 0

)
.

It is easy to see that π =
(

1
2

1
2

)
is an invariant measure of P . Is it reversible? All we

have to do is check πiPij = πjPji for all i, j = 1, 2. Note that in general, one can assume
that i 6= j, since if i = j, this is trivially true. In this specific case, one can see that πi = 1

2
for all i = 1, 2, so we just have to check that Pij = Pji, i.e. that P is symmetric. This is
clear.

In general, if πj is constant in j, then being reversible with respect to π means P is a
symmetric matrix.

Example 9.3. Consider a two-state Markov chain which will jump from A to B, but
which will stay at B forever. Its transition matrix is

P =

(
0 1
0 1

)
.

One can check that π =
(
0 1

)
is an invariant measure. It is also reversible, since

π1P12 = 0 and π2P21 = 0.

Example 9.4. What about non-reversible Markov chains and stationary distributions?
You will show on the HW that one needs to consider states spaces that have size at least
3. Consider the transition matrix

P =

1
2

1
2

0
0 1

2
1
2

1
2

0 1
2

 .

One can check that π =
(

1
3

1
3

1
3

)
is an invariant measure. But, we claim that P is not

reversible with respect to π. To see this, note that π1P12 = 1
3

1
2

= 1
6
, but π2P21 = 0. One

can see the non-reversibility intuitively. The Markov chain describes something walking
along a triangle which either stays put with probability 1/2, or it goes to the right with
probability 1/2. If one were to play a movie of this Markov chain for very long time, if
you watch the movie in reverse, you would see something that stays put with probability
1/2, or moves left with probability 1

2
.

9.2. Perron-Frobenius theorem, in more detail.
Theorem 9.5. Let P be the transition matrix for a Markov chain with finite state space S
of size N . The following are true.
(1) There exists an eigenvalue λ = 1 with left eigenvector π of P . Moreover, π is a

stationary distribution of P .
(2) Suppose µ is another eigenvalue of P . Then |µ| 6 1 (note that µ can be complex!).
(3) Suppose that for some k > 0, the matrix P k has entries that are all positive. Then the

eigenvalue λ = 1 has multiplicity 1, and |µ| < 1 for any other eigenvalue µ.
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Before we prove this theorem, let us see what it is actually saying.
(1) Point (1) is saying that any Markov chain with finite state space has at least one

stationary distribution.
(2) Point (2) says that any other eigenvalue cannot be bigger than 1 in absolute value.
(3) Point (3) says that under some positivity condition, the matrix P k converges to pro-

jection onto the stationary distribution of π. Let us make this a little more precise.
Let µ1, . . . , µN−1 be the eigenvalues of P that are not λ, and let v1, . . . ,vN−1 be the
corresponding left eigenvalues. Take the vector p such that pj = P[X0 = j]. Linear
algebra says that we can write

p = π + α1v1 + . . .+ αN−1vN−1.

By applying P k and using µkj → 0 for any j as k →∞, we deduce pP k → π.
Our discussion of point (3) above actually implies the following.

Lemma 9.6. Let P be the transition matrix of a Markov chain {Xn}n with finite state
space S. Suppose P has eigenvalue λ = 1 with multiplicity 1. Then, for any s ∈ S,

P[Xn = s]→ πs.

Here’s a question. Is there a probabilistic interpretation of the positive condition in
point (3) of the Perron-Frobenius theorem? This is answered by the following.

Proposition 9.7. Suppose P is the transition matrix of a Markov chain with finite state
space S. The following are equivalent.
• There exists k > 0 such that P k has strictly positive entries.
• The Markov chain is “irreducible” and “aperiodic”. In particular:

– The only closed subset is S itself, and S is communicating (this is what “irreducible”
means).

– Take any i, j ∈ S. Consider the set {k > 0 : P[Xk = j|X0 = i] > 0}. Then the
greatest common divisor of the elements in this set is 1. (This is what “aperiodic”
means.)

Example 9.8. Take the transition matrix

P =

(
0 1
1 0

)
.

This is irreducible, since the two states are communicating. However, it is periodic (i.e.
not aperiodic). Indeed, look at the set of k > 0 such that P[Xk = A|X0 = A]. Then k
must be even. Thus, the greatest common divisor of such k is 2, not 1.

Let us try to make sense of this in view of the previous proposition. Since this Markov
chain is not aperiodic, we want to show that P k cannot have strictly positive entries for
any k > 0. One can inspect this directly, since P 2 = I2 and thus P 2k = I2 and P 2k+1 = P .
One can also verify this using Perron-Frobenius. Indeed, if P k had strictly positive entries
for some k, then P could only have one eigenvalue λ = 1, and any other eigenvalue is
< 1 in absolute value. We computed the invariant measure to be π =

(
1
2

1
2

)
. Thus, we

would have P[Xn = A] → 1
2

for n large enough, regardless of what P[X0 = A] is. But
we can choose P[X0 = A] = 1, in which case P[Xn = A] = 1 if n is even and 0 if n is
odd.
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Example 9.9. Take the transition matrix

P =

1
2

1
2

0
0 1

2
1
2

1
2

0 1
2

 .

You will show on the HW that λ = 1 has multiplicity 1, and any other eigenvalue is < 1
in absolute value. Thus, to make sense of the above results, let us try to find k such that
P k has purely positive entries. One can compute

P 2 =

1
2

1
2

0
0 1

2
1
2

1
2

0 1
2

1
2

1
2

0
0 1

2
1
2

1
2

0 1
2

 =

1
4

1
2

1
4

1
4

1
4

1
2

1
2

1
4

1
4

 .

Proof of the proposition. Suppose that there exists k > 0 such that P k has strictly positive
entries. Fix any i, j ∈ S. We claim that

P[Xk+1 = j|X0 = i],P[Xk = j|X0 = i] > 0.

Note that P[Xk = j|X0 = i] = (P k)ij . This is positive by assumption. Now, note that

P[Xk+1 = j|X0 = i] = (P k+1)ij = (PP k)ij =
∑
`

Pi`(P
k)`j.

We know that Pi` > 0 for some `, since the sum of Pi` over all ` must equal 1, and they
are non-negative. But assumption, we also know (P k)`j > 0 for all `. Thus, the above
display is > 0. In particular, the set of m such that P[Xm = j|X0 = i] contains k, k + 1.
The greatest common divisor of this set must then be 1. Thus, the chain is aperiodic. It is
irreducible because it is possible to go from any state to any state in k steps by assumption.

Now, suppose that the chain is irreducible and aperiodic. I will leave this part as an
exercise (come see me in office hours if you would like to see the proof). �

9.3. Proof of Perron-Frobenius.

9.3.1. Proof of (1). Take the vector p such that p1 = 1 and pj = 0 for all j > 2. (This
means start the chain at state 1 with probability 1.) For integer T > 1, define

π(T ) :=
1

T

T∑
k=1

pP k.

Note that the entries of pP k are all between 0 and 1. In particular, the vectors π(T )

belong to a compact subset of R|S|. In particular, there exists a sequence {T`}∞`=1 such
that T` → ∞ as ` → ∞, and π(T`) converges to some π entrywise. We claim that π is a
stationary distribution. To see this, note that

πP = lim
T`→∞

1

T`

T∑̀
k=1

pP kP = lim
T`→∞

1

T`

T`+1∑
k=2

pP k

= lim
T`→∞

1

T`

T∑̀
k=1

pP k + lim
T`→∞

1

T`
pP T`+1 − lim

T`→∞

1

T`
pP.
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The first term in the second line is just π. The second term and third term are vectors in
R|S| whose entries are all in [0, 1] and thus have length bounded by |S|1/2. Dividing by T`
and sending T` →∞ shows that the last two terms vanish, so we get πP = π.

Remark 9.10. This argument is known as the Krylov-Bogoliubov argument, and it is the
only general way we know how to construct stationary distributions of more complicated
Markov chains.

9.3.2. Proof of (2). Assume that part (3) is true. There exists a sequence of transition
matrices Pn that converges to P and such that the entries of Pn are all strictly positive.
Part (3) implies that the claim is true for Pn. But eigenvalues are continuous in matrix
entries, so we can take limits.

9.3.3. Proof of (3). Assume that k = 1; the eigenvalues of P k are just k-th powers of the
eigenvalues of P , so it actually is enough to assume k = 1 for a complete proof, but let’s
just assume it to make things simpler. Suppose P has an eigenvalue µ such that µ 6= 1
and |µ| = 1. We can find m > 1 such that the real part of µm is negative. One can also
check that Pm has strictly positive entries by induction on m. Now, take ε > 0 smaller
than the minimal entry of Pm, and consider the matrix Pm− εId. This matrix has µm− ε
as an eigenvalue. But |µm − ε| > 1 since |µm| = 1 and the real part of µm is strictly
negative. We now claim that any matrix Q whose entries are positive and whose rows
sum to 6 1 cannot have an eigenvalue that is > 1 in absolute value; applying this claim
to Q = Pm − εId gives the desired contradiction.

To prove this matrix fact, suppose Q has an eigenvalue η such that |η| > 1 with eigen-
vector w. Then Qjw = ηjw. The maximal entry of ηjw goes to∞ in absolute value as
j →∞. However, we also know that

|(Qj+1w)i| =
∑
`

Qi`|(Qjw)`| 6 max
`
|(Qjw)`|

since the entries of Q are non-negative and its rows sum to 1. By taking a max over i,
we deduce that the max of |(Qjw)`| is non-increasing in j. This contradicts what we had
before, so we are done.

It suffices to show that λ = 1 has multiplicity 1. For this, we need another lemma.

Lemma 9.11. SupposeQ has positive entries, and v is an eigenvector with positive eigen-
value and the entries of v are non-negative. Then the entries of v are strictly positive.

Proof. For any j, we have

λvj =
∑
i

Qjivi.

At least one of the entries of v must be strictly positive. This means the RHS is strictly
positive. Now divide by λ > 0. �

We return to showing that λ = 1 has multiplicity 1. We know that there exists a
stationary distribution π, and by the lemma, we know that the entries of π are strictly
positive. Let u be another left eigenvector of P with eigenvalue 1, and suppose for the
sake of contradiction that u is not a scalar multiple of π. Because u corresponds to a real
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eigenvalue, and P has real entries, we know u has real entries. Moreover, we can assume
u has a positive entry if we possibly multiply by −1.

Now, for any α > 0, consider wα = π − αu. Let αmax > 0 be the biggest α such
that wα has non-negative entries. We know αmax exists because π has positive entries, so
for small α we know wα as positive entries. But u has a positive entry, so αmax < ∞.
Note that wαmax must have a zero entry, and its entries are non-negative, and it is a left
eigenvector of P with eigenvalue 1. The previous lemma now implies that the entries of
wαmax must be strictly positive, a contradiction. �

9.4. A little Brownian motion teaser.
Definition 9.12. We say a function B : [0,∞)→ R is Brownian motion if the following
hold.
• B0 = 0 with probability 1.
• For all 0 < t1 < . . . < tk, the random variables Bt1 ,Bt2 − Bt1 , . . . ,Btk − Btk−1

are independent Gaussians. Moreover, we have Bt1 ∼ N(0, t1), and Btj+1
− Btj ∼

N(0, tj+1 − tj).
Brownian motion is particularly interesting mathematically because it has a lot of struc-

ture. In particular, it is determined by independent Gaussians. It also satisfies the follow-
ing properties.
Lemma 9.13. Fix any 0 6 s 6 t. We have E[Bt|{Br}r6s] = Bs.
Proof. We have E[Bt|{Br}r6s] = E[Bt − Bs|{Br}r] + Bs = Bs because Bt − Bs ∼
N(0, t− s) is independent of Br for all r 6 s. �

Lemma 9.14. For any 0 < t1 < . . . < tk and any open set A ⊆ R, we have

P[Btk+1
∈ A|Btk = xk, . . . ,Bt1 = x1] = P[Btk+1

∈ A|Btk = xk].

Proof. Note Btk+1
∈ A is the same as Btk+1

−Btk ∈ A−xk. Now use the same idea. �

Lemma 9.15. For any s, t > 0, we have E[BsBt] = min(t, s).
Proof. Suppose s 6 t. Then E[BsBt] = E[B2

s] + E[Bs(Bt −Bs)] = s. �

Proposition 9.16. Brownian motion is continuous on [0,∞) with probability 1.
We will not prove this here, but it is important! In particular, it makes sense to integrate

Brownian motion in time.
Lemma 9.17. For any t > 0, we have E

r t
0
Bsds = 0 and E|

r t
0
Bsds|2 =

Proof. By linearity of expectation, we have E
r t

0
Bsds =

r t
0
EBsds = 0. We also have

E
∣∣∣w t

0
Bsds

∣∣∣2 = E
w t

0

w t

0
BsBrdsdr =

w t

0

w t

0
E[BsBr]dsdr

=
w t

0

w t

0
min(r, s)dsdr = 2

w t

0

w s

0
rdrds

=
w t

0
s2ds =

1

3
t3.

Note this makes at least some sense intuitively, since Bs ∼
√
s, so its integral should be

proportional to t3/2 in size. �
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10. WEEK 10, STARTING TUE. APR. 9, 2024

10.1. Brownian motion.

Definition 10.1. We say a function B : [0,∞)→ R is Brownian motion if the following
hold.
• B0 = 0 with probability 1.
• For all 0 < t1 < . . . < tk, the random variables Bt1 ,Bt2 − Bt1 , . . . ,Btk − Btk−1

are independent Gaussians. Moreover, we have Bt1 ∼ N(0, t1), and Btj+1
− Btj ∼

N(0, tj+1 − tj).

On the HW, you showed that Brownian motion satisfies a Markov property. The fol-
lowing shows that it also has the martingale property.

Lemma 10.2. Fix any 0 6 s 6 t. We have E[Bt|{Br}r6s] = Bs.

Proof. We have E[Bt|{Br}r6s] = E[Bt − Bs|{Br}r] + Bs = Bs because Bt − Bs ∼
N(0, t− s) is independent of Br for all r 6 s. �

Because it has the martingale property, it also satisfies a version of Doob’s optional
stopping!

Definition 10.3. We say that τ ∈ [0,∞) is a stopping time with respect to Brownian
motion B if for any deterministic t > 0, the event τ 6 t is a function of {Bs}s6t.

Example 10.4. Just to drive this point home. If a ∈ R is deterministic, then τa being the
first time that B hits the value a is a stopping time. The time τ∼a given by the last time B
hits a is not a stopping time. This is similar to the random walk case.

Theorem 10.5. Suppose τ is a stopping time such that sup06t6τ |Bt| 6 C for some
C > 0. Then EBτ = 0.

Thus, using the same martingale trick, one can compute the probability that B hits −a
before b (or b before −a), as well as the expected time it takes to hit either −a or b. This
is spelled out on HW10.

We will return to the whole business of martingales later. However, let us just get a
feeling for what Brownian motion is with a computation.

Lemma 10.6. For any t > 0, we have E
r t

0
Bsds = 0 and E|

r t
0
Bsds|2 =

Proof. By linearity of expectation, we have E
r t

0
Bsds =

r t
0
EBsds = 0. We also have

E
∣∣∣w t

0
Bsds

∣∣∣2 = E
w t

0

w t

0
BsBrdsdr =

w t

0

w t

0
E[BsBr]dsdr

=
w t

0

w t

0
min(r, s)dsdr = 2

w t

0

w s

0
rdrds

=
w t

0
s2ds =

1

3
t3.

Note this makes at least some sense intuitively, since Bs ∼
√
s, so its integral should be

proportional to t3/2 in size. �
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Lemma 10.7. For any t > 0, we have E
r t

0
B2
sds = 1

2
t2 and E|

r t
0
B2
sds|2 = 7

12
t4.

Proof. This is on the HW, so I won’t go into too much detail. The first is just interchanging
integration and expectation and using Bs ∼ N(0, s). For the second, we unfold

E|
w t

0
B2
sds|2 =

w t

0

w t

0
E[BsBr]drds = 2

w t

0

w s

0
E[BsBr]drds.

So, one needs to compute the expectation on the far RHS. This is explained in a hint on
the HW. �

10.2. Generating martingales out of Brownian motion. The following is the crowned
jewel of something known as “Ito calculus”.

Theorem 10.8. Suppose f : [0,∞) × R → R is a smooth function. Suppose that
∂tf(t, x) + 1

2
∂2
xf(t, x) = 0 for all t, x. Then the process t 7→ f(t,Bt) satisfies the

martingale property with respect to the filtration generated by B. In particular, for any
0 6 s 6 t, we have

E[f(t,Bt)|{Br}r6s] = f(s,Bs).

Note that if we set s = 0, then E[f(t,Bt)] = f(0, 0) follows.

Example 10.9. Suppose f(t, x) = x. Then clearly ∂tf(t, x) = 0 and ∂2
xf(t, x) = 0.

Thus, Bt satisfies the martingale property. But we already showed this!

Example 10.10. Suppose f(t, x) = x2 − t. Then ∂tf(t, x) = −1 and 1
2
∂2
xf(t, x) = 1, so

B2
t − t satisfies the martingale property. This implies E[B2

t − t] = B2
0 − 0 = 0, so that

E[B2
t ] = t. But we already knew that!

Example 10.11. Suppose f(t, x) = x3 − 3xt. Then 1
2
∂2
xf(t, x) = 3x and ∂tf(t, x) =

−3x. So B3
t − 3Btt satisfies the martingale property! So E[B3

t − 3Btt] = 0, and thus
E[B3

t ] = 3tEBt = 0. But we already knew that!

The previous three examples indicate that maybe one can use the above theorem to
eventually compute all moments of a Gaussian. This is true! And it essentially amounts to
the integration-by-parts formulas that we used a while ago to compute Gaussian moments!
Here’s a compact way to gather all this information. In particular, one can compute the
moment generating function of a Gaussian using the martingale theorem above. This is
on the HW.

Proof of Theorem 10.8. This is an interpolation trick that is used all over the place in
“stochastic analysis”. I will not test you on it, but I did want to show it to you.

I will assume that s = 0 for simplicity and to make things as clear as possible, though
it turns out to not matter (the argument is very similar; please see me in office hours if you
want to see the details). Since s = 0, conditioning on {Br}r6s means conditioning on
B0. But B0 is deterministic, so there is no conditioning happening. Finally, let us assume
that f does not grow too fast as |x| → ∞.

Since Bt ∼ N(0, t), we have

E[f(t,Bt)] =
w

R

1√
2πt

e−
x2

2t f(t, x)dx.
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We now take the t-derivative on both sides. Note that

∂t

{
1√
2πt

e−
x2

2t

}
=

1

2
∂2
x

{
1√
2πt

e−
x2

2t

}
.

Thus, we have
d

dt
E[f(t,Bt)] =

w

R

1

2
∂2
x

{
1√
2πt

e−
x2

2t

}
f(t, x)dx+

w

R

1√
2πt

e−
x2

2t ∂tf(t, x)dx.

Now, note that if f does not grow too fast as |x| → ∞, then by integration-by-parts, we
have

w

R

1

2
∂2
x

{
1√
2πt

e−
x2

2t

}
f(t, x)dx = −

w

R

1

2
∂x

{
1√
2πt

e−
x2

2t

}
∂xf(t, x)dx

=
w

R

1√
2πt

e−
x2

2t
1

2
∂2
xf(t, x)dx.

Thus, we have
d

dt
E[f(t,Bt)] =

w

R

1√
2πt

e−
x2

2t

{
∂tf(t, x) +

1

2
∂2
xf(t, x)

}
dx.

But this is zero by assumption. Thus, E[f(t,Bt)] is constant in t, and we get E[f(t,Bt)] =
E[f(0,B0)] = f(0,B0) as desired. �

10.3. Why does Brownian motion even exist?

Theorem 10.12. Brownian motion B exists.

Proof. This is standard construction of Brownian motion. Fix any integerN > 0 (think of
it as big). Now, break up [0, 1] into a mesh of lengthN−1, i.e. consider IN := {kN−1}Nk=0.
Now, define B(N) : IN → R as follows.
• Let B(N)

0 = 0.
• For any k > 0, let B(N)

k+1
N

− B
(N)
k
N

∼ N(0, N−1) by independent of B(N)

`N−1 for all 0 6

` 6 k.
We can now extend B(N) from IN to all of [0, 1] by linearly interpolating its values on
IN . We would now like to take N → ∞ and hope B(N) converges to something. At this
point, everything becomes pretty analysis-y, so feel free to skip these details for now.

To prove the convergence of B(N) to something, we need a couple of lemmas.

Lemma 10.13. Suppose a sequence of (random) functions {f (N)}N>1 continuous func-
tions satisfies the following.
• supN>1 |f (N)(0)| <∞ with probability 1.
• There exists α ∈ (0, 1) such that for any p > 1 large enough, we have

sup
N>1

E

[∣∣∣∣∣ sup
x 6=y∈[0,1]

|f (N)(x)− f (N)(y)|
|x− y|α

∣∣∣∣∣
p]
<∞.

Then with probability 1, there exists a subsequence of {f (N)}N>1 which converges uni-
formly on [0, 1] as N → ∞. Furthermore, if f (N) is constructed by stipulating values
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on IN and linearly interpolating to all of [0, 1], then the whole sequence converges
uniformly on [0, 1] as N →∞ (with probability 1).

This is like a stochastic version of Arzela-Ascoli. We will not prove it.

Lemma 10.14. For any function f : [0, 1]→ R, we have∣∣∣∣∣ sup
x 6=y∈[0,1]

|f (N)(x)− f (N)(y)|
|x− y|α

∣∣∣∣∣
p

6 Cp
w 1

0

w 1

0

|f (N)(x)− f (N)(y)|p

|x− y|1+pα
dxdy.

This is what is known as a singular integral estimate. We will not prove it either.
Since B

(N)
0 = 0 deterministically, by the previous two lemmas, in order to show that

B(N) has a limit, we must show that for some α > 0, we have

E

[
w 1

0

w 1

0

|B(N)
t −B

(N)
s |p

|t− s|1+pα
dsdt

]
=

w 1

0

w 1

0

E|B(N)
t −B

(N)
s |p

|t− s|1+pα
dsdt <∞

for any p > 1 large enough. By construction, we know that E|B(N)
t −B

(N)
s |p . |t− s|p/2.

Thus, we have
w 1

0

w 1

0

E|B(N)
t −B

(N)
s |p

|t− s|1+pα
dsdt .

w 1

0

w 1

0
|t− s|−1+p( 1

2
−α)dsdt.

If α < 1
2
, then if we take p large enough, the power of |t− s| on the RHS is positive and

thus integrable, so the final double integral is finite. We are done. �

Here is another construction of Brownian motion. Fix N > 0 big, and define

B
(N)
t = z0t+

N∑
k=1

zk
√

2

kπ
sin(kπt).

Above, zk are jointly independent N(0, 1) random variables. It is clear that B(N)
0 = 0

and that B(N)
t is Gaussian for all t ∈ [0, 1] (and even that B(N)

1 ∼ N(0, 1)). The other
properties of Brownian motion can be checked (as N →∞) using trigonometry, but it is
not so easy...

10.4. A little filler on martingales. There is something I forgot to mention about mar-
tingales and Brownian motion. We say earlier that B2

t − t has the martingale property, so
it also satisfies a Doob optional stopping theorem.

Theorem 10.15. Suppose τ is a stopping time with respect to Brownian motion B such
that Eτ <∞. Suppose f(t, x) satisfies ∂tf(t, x) + 1

2
∂2
xf(t, x) = 0. Then

Ef(τ,Bτ ) = f(0, 0).

In particular, if Eτ <∞, then EB2
τ = Eτ .

10.5. A little primer on stochastic differential equations.
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Definition 10.16. Consider a smooth function b : [0,∞)×R→ R. We say that Xt solves
the equation dXt = b(t,Xt)dt+ σdBt if for all t > 0, we have

Xt =
w t

0
b(s,Xs)ds+ σBt.

The function b is called the drift and the constant σ is called the diffusivity.

Example 10.17. Suppose b ≡ 0. Then the SDE dXt = dBt is equivalent to Xt = Bt.

Example 10.18. Suppose b(x) = −x. Then we have the SDE dXt = −Xtdt+dBt. This
is equivalent, by definition, to

Xt = −
w t

0
Xsds+ Bt.

This is known as the Ornstein-Uhlenbeck (OU) process. Essentially, you have a Brownian
motion, but the term −Xtdt discourages Xt from getting big in absolute value. It sort of
“confines” Xt.

Example 10.19. We say a smooth function V : R→ R is uniformly convex if inf V ′′(x) >
C > 0. Take the SDE Xt = −V ′(Xt)dt + Bt. Since V is uniformly convex, the term
V ′(Xt) also likes to keep Xt confined. Indeed, the case V (x) = x2/2 is the OU process.
For general V , this is known as the Langevin process with “potential” V .

Lemma 10.20. Suppose dXt = b1(Xt)dt+ σ1dBt and dYt = b2(Yt)dt+ σ2dBt. Then
Zt = Xt + Yt solves dZt = {b1(Xt) + b2(Yt)} dt+ (σ1 + σ2)dBt.

Proof. It is enough to check that

Zt =
w t

0
{b1(Xs) + b2(Ys)} ds+ (σ1 + σ2)Bt.

It is almost tautological, but let us be precise. We have

Zt = Xt + Yt =
w t

0
b1(Xs)ds+

w t

0
b2(Ys)ds+ σ1Bt + σ2Bt

by definition. Now just combine terms. �

10.6. Invariant measures.

Lemma 10.21. Suppose dXt = b(t,Xt)dt + σdBt, where the dependence of b on t is
deterministic. Then X satisfies the Markov property. In particular, for any 0 6 s 6 t and
any open set A ⊆ R, we have

P [Xt ∈ A|{Xr}r6s] = P [Xt ∈ A|Xs] .

Proof. We first note that

Xt −Xs =
w t

s
b(r,Xr)dr + σ(Bt −Bs).

Moreover, Xr is a function of Bu only for u 6 r for any r. Thus, Bt−Bs is independent
of Xr for r 6 s. In particular, the path {Xa}a>s, by the previous formula, is a function
only of Xs and {Ba−Bs}a>s, the latter of which is independent of {Xr}r6s. In particular,
once we condition on Xs, conditioning further on Xr for r 6 s does nothing in terms of
the distribution of Xt, so we are done. �
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What we have shown is that the solution to an SDE with deterministic “drift” satisfies
the Markov property. We spent a lot of time looking at invariant measures of Markov
chains, so it is natural to ask the same questions about SDEs.

Definition 10.22. We say a probability distribution on R with pdf p(x) is an invariant
measure for dXt = b(t,Xt)dt+ σdBt if

1

2
σ2∂2

xp(x)− ∂x {b(t, x)p(x)} = 0.

Usually, unless there is some very weird structure, this will only make sense if b does
not depend on time. We will see next week where this PDE actually comes from. In
particular, we will prove the following next week.

Theorem 10.23. Suppose dXt = b(t,Xt)dt+σdBt and X0 has distribution given by pdf
p(x), where p(x)dx is an invariant measure. Then for any deterministic t > 0, we know
that Xt also has distribution given by pdf p(x).

Of course, there is also the question of whether or not if I start with an arbitrary proba-
bility distribution for X0, does it converge to the invariant measure as t→∞. This is the
question of “ergodicity” of Xt. There is the following criterion, which we will not prove,
but you will see an example of on the HW (actually, the proof of the exercise on the HW
extends to the following case as well with a little tweaking).

Theorem 10.24. You cannot use this on HW10; the point of the problem on HW10 is to
illustrate an example of this! Suppose dXt = −V ′(Xt)dt + dBt, where V is uniformly
convex. Then the probability distribution

1r
R e
−V (y)dy

e−V (x)dx

is an invariant measure for Xt. Moreover, for any initial distribution for X0, the distribu-
tion of Xt converges to the above invariant measure as t→∞.

Example 10.25. This is on the HW. Take V (x) = x2/2, so that we have the OU process
dXt = −Xtdt+ dBt. Its invariant measure is proportional to e−x2/2dx; i.e., its invariant
measure is just the N(0, 1) distribution! What the above theorem is saying is that if you
now run this OU process for very long time, its distribution starts to look more and more
like N(0, 1). This agrees with our intuition from before; it is a Brownian motion which
likes to diffuse, but with a confinement that gives its distribution the shape of a bell curve.

11. WEEK 11, STARTING APRIL 16, 2024

11.1. Ito formula.

Theorem 11.1. Suppose f : [0,∞) × R → R is smooth. Suppose dXt = b(t,Xt)dt +
σdBt. Then the process

Mf
t := f(t,Xt)− f(0,X0)−

w t

0

{
∂sf(s,Xs) + b(s,Xs)∂xf(s,Xs) +

1

2
σ2∂2

xf(s,Xs)

}
ds

(11.1)
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has the martingale property with respect to X·, i.e. E[Mf
t |{Xr}r6s] = Mf

s for any
0 6 s 6 t.

Example 11.2. If we take f(t, x) = x, then the previous says that Xt−X0−
r t

0
b(s,Xs)ds

is a martingale. But by definition this is σBt, so we already knew this!

Proof. Here is a schematic of the proof. Write

f(Xt) = f(X0) +
N−1∑
k=0

{
f(tk+1,Xtk+1

)− f(tk,Xtk)
}
, (11.2)

where tk = k
N

and N is very big. By the SDE, we know that

f(tk+1,Xtk+1
)− f(tk,Xtk) ≈ b(tk,Xtk)∂xf(tk,Xtk)(tk+1 − tk) (11.3)

+ σ∂xf(tk,Xtk)
{
Btk+1

−Btk

}
(11.4)

+
1

2
σ2∂2

xf(tk,Xtk)
{
Btk+1

−Btk

}2
. (11.5)

We need the quadratic term because
{
Btk+1

−Btk

}2 ≈ tk+1 − tk = N−1, and we need
something much smaller than this if we want to sum up N copies and get something that
goes to 0. By Riemann sum integration, we have

N−1∑
k=0

b(tk,Xtk)∂xf(tk,Xtk)(tk+1 − tk)→
w t

0
b(s,Xs)∂xf(s,Xs). (11.6)

Similarly, we know that E|Btk+1
− Btk |2 = tk+1 − tk. If you believe in law of large

numbers, we then have
N−1∑
k=0

1

2
σ2∂2

xf(tk,Xtk)
{
Btk+1

−Btk

}2 →
w t

0

1

2
σ2∂2

xf(s,Xs)ds. (11.7)

Thus, we have

Mf
t = lim

N→∞

N−1∑
k=0

σ∂xf(tk,Xtk)
{
Btk+1

−Btk

}
. (11.8)

The point is for eachN , the sum on the RHS has the martingale property. Indeed, it is like
adding independent noises at very small time-increments. It is important that we evaluate
∂xf at Xtk and not Xtk+1

for this independence of noises to hold. �

Corollary 11.3. Suppose f : [0,∞) × R → R is smooth. Suppose dXt = b(t,Xt)dt +
σdBt. Then for any t > 0, we have

Ef(t,Xt) = Ef(0,X0) +
w t

0
E
{
∂sf(s,Xs) + b(s,Xs)∂xf(s,Xs) +

1

2
σ2∂2

xf(s,Xs)

}
ds.

(11.9)

Proof. Just use EMf
t = EMf

0 = 0. �

Theorem 11.4. Suppose dXt = b(t,Xt)dt + σdBt. Then the distribution of Xt has pdf
given by q(t, x), where ∂tq(t, x) = 1

2
σ2∂2

xq(t, x)− ∂x{b(t, x)q(t, x)}.
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Proof. By the corollary above, for any smooth f : R→ R, we have
d

dt
Ef(Xt) = E

{
b(t,Xt)∂xf(Xt) +

1

2
σ2∂2

xf(Xt)

}
. (11.10)

The LHS is just
r
R f(x)∂tq(t, x)dx. The RHS is just

r
R

{
b(t, x)∂xf(x) + 1

2
σ2∂2

xf(x)
}
q(t, x)dx.

If we integrate by parts on the RHS, we deduce that the RHS is
r
R f(x)[1

2
σ2∂2

xq(t, x) −
∂x{b(t, x)q(t, x)}]dx. Thus, we have (for any smooth f : R→ R)

w

R
f(x)∂tq(t, x)dx =

w

R
f(x)

[
1

2
σ2∂2

xq(t, x)− ∂x{b(t, x)q(t, x)}
]

dx. (11.11)

This is enough to deduce the equation we are looking for. �

Theorem 11.5. Suppose dXt = b(t,Xt)dt+ σdBt and X0 has distribution given by pdf
p(x), where p(x)dx is an invariant measure. Then for any deterministic t > 0, we know
that Xt also has distribution given by pdf p(x).

Proof. By the previous theorem, we know that ∂tq(t, x) = 1
2
σ2∂2

xq(t, x)−∂x{b(t, x)q(t, x)}.
But p(x) satisfies this equation because its invariant, so we are done. �

11.2. Fun fact about the OU process.

Lemma 11.6. Suppose dXt = −Xtdt+
√

2dBt. Suppose that for some N > 1, we have
EXk

0 = EZk for all k 6 N and for Z ∼ N(0, 1). Then EXk
t = EZk for all k 6 N and

all t > 0 deterministic.

Proof. We focus on N = 2; the proof for general N is similar but more complicated.
Suppose k = 1. We need to show that if EX0 = 0, then EXt = 0 for all t > 0

deterministic. By definition, we have Xt = X0 −
r t

0
Xsds +

√
2Bt, so EXt = EX0 −r t

0
EXsds = −

r t
0
EXsds. Thus we have d

dt
EXt = −EXt. But any solution to f ′(t) =

−f(t) must be f(t) = f(0)e−t, and in this case, we have f(0) = EX0 = 0.
Now, take k = 2. We have to show that if EX2

0 = 1, then EX2
t = 1 for all t > 0

deterministic. By the Ito formula, we have

EX2
t = EX2

0 −
w t

0
EX2

sds+
w t

0
ds. (11.12)

One can check that EX2
t = 1 for all t > 0 solves this equation, so we are done (by

uniqueness of solutions to ordinary differential equations). �

11.3. Another proof of the central limit theorem. This one is actually helpful!

Theorem 11.7. Suppose {Xi}∞i=1 are i.i.d. random variables that are mean zero, variance
1, and E|Xi|3 <∞. Then SN = X1+...+XN√

N
converges in distribution to N(0, 1).

Proof. We want to show that Ef(SN) = Ef(Z) + εN , where εN → 0 as N → ∞ and
Z ∼ N(0, 1). For any i > 1, define dXi(t) = −Xi(t)dt+

√
2dBi(t), where Bi are i.i.d.

Brownian motions, and Xi(0) = Xi. Define SN(t) = X1(t)+...+XN (t)√
N

. We want to show
that

Ef(SN(t)) = Ef(SN) + δN (11.13)
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where δN → 0 and t = N0.1. Indeed, assuming this, we know by HW10 that there are
i.i.d. Gaussians Z1, . . . , ZN ∼ N(0, 1) such that for each i, we have |Xi(t)−Zi| . e−t =

e−N
0.1 . If we define Z = Z1+...+ZN√

N
, we thus have Ef(SN(t)) = Ef(Z) +O(Ne−N

0.1
) ≈

Ef(Z). But Z ∼ N(0, 1).
We are left to prove the previous display. For this, we use the Ito formula. Let us set

this up. The SDEs we have are dXi(t) = −Xi(t)dt +
√

2dBi(t). So b(s, x) = −x and
σ =
√

2. We have

Ef(SN(t))− Ef(SN) =
w t

0

N∑
i=1

E
{
−Xi(r)√

N
∂xf(SN(r))

}
dr +

w t

0

N∑
i=1

1

N
E∂2

xf(SN(r))dr.

(11.14)

The 1√
N

for each derivative comes from the fact that SN(r) divides by
√
N . Now, we

expand

∂xf(SN(r)) = ∂xf(SiN(r)) +
Xi(r)√
N

∂2
xf(SiN(r)) +O(N−1)

= ∂xf(SiN(r)) +
Xi(r)√
N

∂2
xf(SN(r)) +O(N−1

where SiN(r) is just SN(r) but omitting the Xi(r) variable. Thus, we have

Ef(SN(t))− Ef(SN) =
w t

0
E

[
1

N

N∑
i=1

{
1−Xi(r)

2
}
∂2
xf(SN(r))

]
dr +O(N−1/2t).

(11.15)

Since t = N0.1, the last term is small. Now, we recall that EXi(r)
2 = 1 for all r. So, the

law of large numbers tells us that 1
N

∑N
i=1 {1−Xi(r)

2} . N−1/2, so the first term on the
RHS is also O(N−1/2t), and we are done. �

11.4. How does one actually solve a stochastic differential equation? We want to
solve the SDE

Xt = X0 +
w t

0
b(s,Xs)ds+ σBt. (11.16)

The initial condition X0 is fixed. The typical way to do something like this is to solve
this for Xt with t ∈ [0, ε] for some small ε > 0. Then, solve the equation with t ∈ [ε, 2ε]
with Xε as your new initial condition. Then repeat to get all t ∈ R. The key tool in this
business is the following contraction principle.

Lemma 11.8. Suppose Φ : C([a, b]) → C([a, b]) is a map such that there exists δ > 0
such that for any f, g ∈ C([a, b]), we have

sup
x∈[a,b]

|Φ(f)(x)− Φ(g)(x)| 6 (1− δ) sup
x∈[a,b]

|f(x)− g(x)|.

C([a, b]) is the space of continuous functions [a, b]→ R, and Φ(f),Φ(g) ∈ C([a, b]) are
the images of f, g under Φ. Then there exists a unique h ∈ C([a, b]) such that Φ(h) = h
as function on [a, b].
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We will not prove this, but we will use it.

Example 11.9. Take the OU process dXt = −Xtdt+
√

2Bt. We want to find a solution
to

Xt = X0 −
w t

0
Xsds+

√
2Bt. (11.17)

Now, for any continuous function Y : [0, ε] → R, define the map Φ : C([0, ε]) →
C([0, ε]) by Φ(Y )t := X0 −

r t
0
Ysds +

√
2Bt; the initial condition X0 is the prescribed

one. Solving the OU equation is the same as finding a fixed point of Φ. We will use the
lemma above. For any Y (1), Y (2) ∈ C([0, ε]), we have

Φ(Y (1))t − Φ(Y (2))t = −
w t

0
[Y (1)
s − Y (2)

s ]ds. (11.18)

Thus, we have (for some small ε > 0 to be chosen)

sup
t∈[0,ε]

|Φ(Y (1))t − Φ(Y (2))t| 6 sup
t∈[0,ε]

t sup
s∈[0,t]

|Y (1)
s − Y (2)

s | 6 ε sup
t∈[0,ε]

|Y (1)
t − Y (2)

t |.

(11.19)

As long as ε < 1, we can use the lemma above to deduce that Φ has a unique fixed point,
so that the OU process has a unique solution for t ∈ [0, ε]. Now do the same argument
for t ∈ [ε, 2ε] with the new initial condition of Xε, and continue to t ∈ [2ε, 3ε], etc.

The only thing we used about the OU process was a certain property of the drift called
the “uniform Lipschitz property”. It is clarified in the following more general theorem.

Theorem 11.10. Suppose dXt = b(t,Xt)dt + σdBt is such that |b(t, x) − b(t, y)| 6
C|x − y| for all x, y and for some C > 0 independent of t, x, y. For any choice of
deterministic X0, there exists a unique solution to dXt = b(t,Xt)dt+ σdBt.

Proof. The strategy is the same. For ε > 0 small, define the map Φ : C([0, ε]) →
C([0, ε]) given by Φ(Y )t = X0 +

r t
0
b(s, Ys)ds+σBt. We want to show this has a unique

fixed point. For any Y, Z ∈ C([0, ε]), we have

Φ(Y )t − Φ(Z)t =
w t

0
[b(s, Ys)− b(s, Zs)]ds. (11.20)

The Lipschitz property of b and the previous display give

sup
t∈[0,ε]

|Φ(Y )t − Φ(Z)t| 6 sup
t∈[0,ε]

t sup
s∈[0,t]

C|Ys − Zs| 6 Cε sup
t∈[0,ε]

|Yt − Zt|. (11.21)

Now choose ε > 0 small so that Cε < 1 and use the contraction lemma above. This gives
a solution for t ∈ [0, ε]. Now do the same argument for t ∈ [ε, 2ε] with the new initial
condition of Xε, and continue to t ∈ [2ε, 3ε], etc. �
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