
Math 154: Probability Theory, HW 9

DUE APRIL 16, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. GETTING OUR HANDS ON BROWNIAN MOTION

1.1. A computation. Consider the integral
r t

0
B2

sds.

(1) Compute E
r t

0
B2

sds.
(2) Compute E|

r t

0
B2

sds|2. (Hint: as in class, square the integral to get a double integral
over 0 ⩽ r ⩽ s ⩽ t. For r ⩽ s, it may then help to write B2

sB
2
r = (Bs − Br +

Br)
2B2

r = (Bs−Br)
2B2

r+2(Bs−Br)B
3
r+B4

r . Now use independence of increments
and knowledge of the distribution of increments.)

(3) Deduce the variance of
r t

0
B2

sds.

Solution. (1) We have E
r t

0
B2

sds =
r t

0
EB2

sds =
r t

0
sds = 1

2
t2.

(2) We have

E
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0
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sB
2
r]drds = 2
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w s
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2
r]drds
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0

w s

0
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2B2
r]drds+ 4
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0
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3
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+ 2
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0

w s

0
E[B4

r]drds.

The second term in the last expression is zero by independence and mean-zero of
increments. Since Br ∼ N(0, r) and Bs − Br ∼ N(0, s − r), by independent of
increments, we have
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0
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=
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0
s3ds− 2
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0
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1

4
t4 − 1

6
t4 =

1

12
t4,

2
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r]dr = 6
w t

0
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0
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0
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By combining the previous two displays, we get E|
r t

0
B2

sds|2 = 7
12
t4.

(3) By parts (1) and (2), we have Var
r t

0
B2

sds =
7
12
t4 − 1

4
t4 = 1

3
t4.

□
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1.2. Brownian Gambler’s ruin (Hint: use optional stopping!) Let B be Brownian
motion, and fix a, b > 0. Let τa,b be the first time τ such that Bτ ∈ {−a, b}.
(1) Find the probability that Bτa,b = a.
(2) Compute Eτa,b.
Solution. (1) By optional stopping and the martingale property of B, we have EBτa,b = 0.

But EBτa,b = −aP[Bτa,b = −a] + bP[Bτa,b = b]) = −aP[Bτa,b = −a] + b(1 −
P[Bτa,b = −a]). Thus, we get P[Bτa,b = −a] = b

a+b
.

(2) By optional stopping and the martingale property of B2
t − t, we have EB2

τa,b
= Eτa,b.

By part (1), we have Eτa,b = EB2
τa,b

= a2 b
a+b

+ b2 a
a+b

= a2b+ab2

a+b
.

□
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1.3. Moment generating function of Gaussians, Brownian motion style. Consider the
process Mt := exp {λBt − µt}, where λ, µ ∈ R.
(1) Fix λ ∈ R. For which µ = µ(λ) ∈ R does M satisfy the martingale property?

(µ(λ) will depend on λ.) In what follows, we will always take Mt for this choice of
µ = µ(λ).

(2) Fix λ ∈ R. Show that EM1 = 1.
(3) Deduce that if Z ∼ N(0, 1), then EeλZ = eλ

2/2. (Hint: recall B1 ∼ N(0, 1).)

Solution. (1) As shown in class, for Mt to be a martingale, we need to find µ such that(
∂t +

1

2
∂2
x

)
exp{λx− µt} = 0.

The LHS is equal to exp{λx− µt}(−µ+ 1
2
λ2). Thus, it suffices to take µ = 1

2
λ2.

(2) By the martingale property, we have EM1 = EM0 = 1.
(3) By part (2), we have EeλB1−λ2/2 = 1. Thus, EeλB1 = eλ

2/2. Conclude by the hint.
□
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1.4. Ergodicity of the OU process. Suppose Xt is an OU process with initial condition
X0, that is dXt = −Xtdt+ dBt, where Bt is a Brownian motion.
(1) Show that N(0, 1) is an invariant distribution for the OU process (see the notes for

what this means).
(2) Let Zt be an OU process with initial condition Z0 ∼ N(0, 1). That is, dZt = −Zt +

dBt, where B is the same Brownian motion from above. Define Yt = Xt −Zt. Show
that Yt = Y0e

−t for all t ⩾ 0. Deduce that Yt → 0 as t → ∞. (Hint: compute the
differential equation solved by Yt using the SDEs for Xt, Zt; you can use that any
solution to f ′(t) = −f(t) is given by f(t) = f(0)e−t.)

Solution. (1) As shown in class, it suffices to show that
d2

dx2
p(x) +

d

dx
(xp(x)) = 0,

where p(x) is the pdf for N(0, 1). We check this directly:
d

dx
p(x) =

d

dx

1√
2π

e−
x2

2 = − 1√
2π

xe−
x2

2 ,

d2

dx2
p(x) =

d

dx

(
− 1√

2π
xe−

x2

2

)
= − 1√

2π
e−

x2

2 +
1√
2π

x2e−
x2

2 .

Thus,
d2

dx2
p(x) +

d

dx
(xp(x)) = − 1√

2π
e−

x2

2 +
1√
2π

x2e−
x2

2 − 1√
2π

x2e−
x2

2 +
1√
2π

e−
x2

2

= 0,

so we are done.
(2) We have dYt = dXt − dZt = −Xtdt + Ztdt = −Ytdt. Now use the hint to get

Yt = Y0e
−t.

□
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1.5. Brownian bridge. The Brownian bridge is a “Brownian motion conditioned to hit
0 at time 1”. The point of this exercise is to make this precise in a more natural way.

Let {zk}∞k=1 be a collection of i.i.d. N(0, 1) random variables. For any N > 0, define

Z
(N)
t :=

N∑
k=1

zk
√
2

kπ
sin(kπt).

Show that Z(N)
0 = Z

(N)
1 = 0. Show that EZ(N)

t = 0 and that

E|Z(N)
t − Z

(M)
t |2 →N,M→∞ 0.

Solution. We know that sin(kπ) = 0 for any integer k, so Z
(N)
0 ,Z

(N)
1 = 0 follows. Since

zk have expectation 0, by linearity of expectation, we have EZ(N)
t =

∑N
k=1

E[zk]
√
2

kπ
sin(kπt) =

0. Moreover, we have

Z
(N)
t − Z

(M)
t =

M∑
k=N+1

zk
√
2

kπ
sin(kπt).

Since zk are i.i.d. N(0, 1), we have

E|Z(N)
t − Z

(M)
t |2 =

M∑
k=N+1

2E|zk|2

k2π2
sin(kπt)2 ⩽

M∑
k=N+1

2

k2π2
,

which is ⩽ CN−1 for some constant C > 0. Since N−1 → 0 as N → ∞, we are
done. □
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