Math 154: Probability Theory, HW 9

DUE APRIL 9, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some more practice with Markov chains

1.1. Concrete example. Fix $\alpha, \beta \in (0, 1)$, and let $\{X_n\}_n$ be the Markov chain with transition matrix

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

- (1) Compute the stationary distribution.
- (2) For what values of $\alpha, \beta \in (0, 1)$ is the Markov chain reversible in equilibrium?

1.2. Sometimes it helps to be lazy.

- (1) Suppose $\{X_n\}_n$ is the Markov chain with state space $\{s_1, s_2, s_3\}$ such that with probability 1, if $X_n = s_k$, then $X_{n+1} = s_{k+1}$ if k < 3 and $X_{n+1} = s_1$ if k = 3 (in words, it keeps going right but loops back $3 \mapsto 1$). Write down its transition matrix.
- (2) Let P be the transition matrix from part (1). For any $z \in \mathbb{C}$, compute det $[zI_3 P]$, where I₃ is the 3 × 3 identity matrix and z is just multiplying every entry by z.
- (3) In part (2), you should get a degree 3 polynomial. Show that its roots λ satisfy $|\lambda| = 1$.
- (4) Now, let $\{Y_n\}_n$ be the Markov chain with state space $\{s_1, s_2, s_3\}$ such that

$$\mathbb{P}[Y_{n+1} = \mathbf{s} | Y_n = \mathbf{s}_k] = \begin{cases} \frac{1}{2} & \mathbf{s} = \mathbf{s}_{k+1} \\ \frac{1}{2} & \mathbf{s} = \mathbf{s}_k \\ 0 & \text{else} \end{cases}$$

where k+1 is identified with 1 if k = 3. In words, Y goes to the right with probability 1/2, and with probability 1/2, it stays put. Show (directly without using any theorem about irreducibility from class) that its transition matrix has one eigenvalue $\lambda_1 = 1$, and its other eigenvalues satisfy $|\lambda| < 1$.

1.3. Going backwards? Let $\{X_n\}_n$ be the Markov chain with state space $\{A, B, C\}$ and transition matrix

$$P = \begin{pmatrix} 0.4 & 0.4 & 0.2 \\ 0.6 & 0.2 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{pmatrix}$$

Suppose that $X_0 = A$ with probability 1, just for simplicity.

(1) Compute the stationary distribution π for P (make sure the entries of π are non-negative and add up to 1). Show that P has eigenvalue 1 with multiplicity 1.

- (2) Compute limits as $n \to \infty$ of $\mathbb{P}[X_n = s]$ for $s \in \{A, B, C\}$.
- (3) Compute $\lim_{n\to\infty} \mathbb{P}[X_{n-1} = C | X_n = B]$. (*Hint*: use Bayes' rule)

1.4. A linear algebra interpretation of reversibility. Suppose P is a transition matrix of size $N \times N$ with stationary distribution π with entries π_1, \ldots, π_N . For any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ with entries $\mathbf{x}_1, \ldots, \mathbf{x}_N$ and $\mathbf{y}_1, \ldots, \mathbf{y}_N$ respectively, define

$$\langle \mathbf{x}, \mathbf{y}
angle := \sum_k \mathbf{x}_k \mathbf{y}_k \pi_k.$$

Show *P* is reversible with respect to π if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, we have $\langle \mathbf{x}, P\mathbf{y} \rangle = \langle P\mathbf{x}, \mathbf{y} \rangle$. (*Hint*: for showing reversibility of *P*, use the assumption $\langle \mathbf{x}, P\mathbf{y} \rangle = \langle P\mathbf{x}, \mathbf{y} \rangle$ with \mathbf{x}, \mathbf{y} being standard basis vectors.)

1.5. Brownian motion has the Markov property. Recall that a Brownian motion $\{B_t\}_{t \ge 0}$ satisfies the following.

- \mathbf{B}_0 with probability 1.
- For any times $0 < t_1 < t_2 < \ldots < t_{k+1}$, the vector $(\mathbf{B}_{t_1}, \mathbf{B}_{t_2} \mathbf{B}_{t_1}, \ldots, \mathbf{B}_{t_{k+1}} \mathbf{B}_{t_k})$ has independent Gaussian entries with variance $\mathbb{E}|\mathbf{B}_{t_{\ell+1}} \mathbf{B}_{t_\ell}|^2 = t_{\ell+1} t_{\ell}$.

Show that for any sequence of times $0 < t_1 < t_2 < \ldots < t_{k+1}$ and any open set $A \subseteq \mathbb{R}$, we have

$$\mathbb{P}[\mathbf{B}_{t_{k+1}} \in A | \mathbf{B}_{t_k} = x_k, \dots, \mathbf{B}_{t_1} = x_1] = \mathbb{P}[\mathbf{B}_{t_{k+1}} \in A | \mathbf{B}_{t_k} = x_k].$$

(*Hint*: it may help to first explain why $\mathbf{B}_{t_{k+1}} - \mathbf{B}_{t_k}$ is independent of \mathbf{B}_{t_ℓ} for all $1 \leq \ell \leq k$.)