# Math 154: Probability Theory, HW 8 

## Due April 2, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

## 1. Some practice with Markov chains

1.1. Classification of states. Consider the state space $\{A, B, C, D\}$. For each Markov chain below (specified by its transition matrix), specify which states (i.e. which of $A, B, C, D$ ) are recurrent and which are transient. (Recall a transition matrix $P$ has entries given by $P_{i j}=\mathbb{P}[i \rightarrow j]$.)
(1) $P_{1}=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\ 0 & 0 & 0 & 1\end{array}\right)$
(2) $P_{2}=\left(\begin{array}{cccc}0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
(3) Find two row vectors $\pi_{1}$ and $\pi_{2}$ of length 4 such that $\pi_{1} P_{1}=\pi_{1}$ and $\pi_{2} P_{1}=\pi_{2}$. Your two row vectors cannot be scalar multiplies of each (e.g. they must be linearly independent). What do you notice about the sign of each entry in $\pi_{1}, \pi_{2}$ ?
Solution. (1) States $1,2,4$ are recurrent. Indeed, $\{1,2\}$ and $\{4\}$ are closed and communicating (since $\mathbb{P}[1 \rightarrow 2]$ and $\mathbb{P}[2 \rightarrow 1]$ are both positive). State 3 is transient, because the probability of entering a closed communicating class $\{4\}$ is positive.
(2) All states are recurrent. Indeed, $\mathbb{P}[A \rightarrow B]$ and $\mathbb{P}[B \rightarrow D]$ and $\mathbb{P}[D \rightarrow C]$ and $\mathbb{P}[C \rightarrow A]$ are all positive. Thus, there is a positive probability to go from $A$ to any of $B, C, D$ after a finite number of steps, and vice versa. This means the communicating class of $A$ is all of $\{A, B, C, D\}$.
(3) Choose $\pi_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$ and $\pi_{2}=\left(\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & 0 & 0\end{array}\right)$. All entries are non-negative.
1.2. A nice trick in computing long-time behavior of a Markov chain. Consider $P_{1}$ from Problem 1.1. We will see that diagonalization from linear algebra is actually useful.
(1) Compute $\operatorname{Tr} P_{1}$ and $\operatorname{det} P_{1}$.
(2) Compute the eigenvalues of $P_{1}$. (Hint: the eigenvalues sum to the trace, and they multiply to the determinant. Use part (3) in Problem 1.1.)
(3) Label the eigenvalues as $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4}$, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ be the associated left eigenvectors, so that $\mathbf{v}_{i} P_{1}=\lambda_{i} \mathbf{v}_{i}$. Note that $\left|\lambda_{3}\right|,\left|\lambda_{4}\right|<1$. Deduce that for $i=3,4$, we have $\mathbf{v}_{i} P_{1}^{n} \rightarrow \overrightarrow{0}$ as $n \rightarrow \infty$, where $\overrightarrow{0}=(0,0,0,0)$.
(4) Any vector $\mathbf{v}$ can be written as a linear combination $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}$. Show that $\mathbf{v} P_{1}^{n} \rightarrow \alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}$ as $n \rightarrow \infty$. This shows that the long-time behavior of the $P_{1}$ Markov chain is rather simple!
Solution. (1) We have $\operatorname{Tr} P_{1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+1=\frac{9}{4}$ and $\operatorname{det} P_{1}=0$, since the first three columns of $P_{1}$ are linearly dependent.
(2) We know two eigenvalues $\lambda_{1}, \lambda_{2}=1$. Thus, the other eigenvalues satisfy $2+\lambda_{3}+\lambda_{4}=$ $\frac{9}{4}$ and one of $\lambda_{3}, \lambda_{4}$ is equal to 0 . In particular, we have $\lambda_{3}+2=\frac{9}{4}$, so $\lambda_{3}=\frac{1}{4}$.
(3) We have $\mathbf{v}_{3} P^{n}=\lambda_{3} \mathbf{v}_{3} P^{n-1}=\ldots=\lambda_{3}^{n} \mathbf{v}_{3}$. Since $\left|\lambda_{3}\right|<1$, we have $\lambda_{3}^{n} \rightarrow 0$, so that $\mathbf{v}_{3} P^{n} \rightarrow \overrightarrow{0}$. The same is true for $\lambda_{4}$, though in this case it is easier, since $\mathbf{v}_{4} P^{n}=0$ as long as $n \geqslant 1$.
(4) By linearity of matrix multiplication, we have $\mathbf{v} P_{1}^{n}=\alpha_{1} \mathbf{v}_{1} P_{1}^{n}+\alpha_{2} \mathbf{v}_{2} P_{1}^{n}+\alpha_{3} \mathbf{v}_{3} P_{1}^{n}+$ $\alpha_{4} \mathbf{v}_{4} P_{1}^{n}$. Since $\mathbf{v}_{j} P_{j}=\mathbf{v}_{j}$ for $j=1,2$ (since $\lambda_{1}, \lambda_{2}=1$ ), we have $\mathbf{v} P_{1}^{n}=\alpha_{1} \mathbf{v}_{1}+$ $\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3} P_{1}^{n}+\alpha_{4} \mathbf{v}_{4} P_{1}^{n}$. Now use part (3).
1.3. Random walk in dimension 2. Let $\mathbf{X}(n)=\left(X_{1}(n), X_{2}(n)\right)$, where $X_{1}, X_{2}$ are independent symmetric simple random walks such that $X_{1}(0), X_{2}(0)=0$ and $n \geqslant 0$ is an integer. In what follows, you can use the computations from class.
(1) Show that for any $n \geqslant 0$, we have

$$
\mathbb{P}[\mathbf{X}(2 n)=(0,0)]=\binom{2 n}{n}^{2} 2^{-4 n}
$$

Deduce that $\mathbb{P}[\mathbf{X}(2 n)=(0,0)] \geqslant C n^{-1}$ for all $n \geqslant 1$, where $C \geqslant 0$ is some fixed constant. (Hint: use independence of $X_{1}, X_{2}$ )
(2) Show that

$$
\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n)=(0,0)]=\infty
$$

and deduce that $\mathbf{X}$ has the origin as a recurrent state.
Solution. (1) By independence of $X_{1}, X_{2}$, we have

$$
\mathbb{P}[\mathbf{X}(2 n)=(0,0)]=\mathbb{P}\left[X_{1}(2 n)=0, X_{2}(2 n)=0\right]=\prod_{i=1}^{2} \mathbb{P}\left[X_{i}(2 n)=0\right]
$$

We computed in class that $\mathbb{P}\left[X_{i}(2 n)=0\right]=\binom{2 n}{n} 2^{-2 n}$, so the first claim follows. For the second, we computed in class that $\binom{2 n}{n} 2^{-n} \geqslant C_{1} n^{-1 / 2}$. Now square this.
(2) We have

$$
\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n)=0,0] \geqslant \sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2 n)=(0,0)] \geqslant C \sum_{n=1}^{\infty} n^{-1}
$$

and the last series diverges. Thus, the far LHS of the previous display must diverge as well, which means $\mathbf{X}$ has the origin as a recurrent state.
1.4. Random walk in dimensions greater than or equal to 3 . Let $\mathbf{X}(n)=\left(X_{1}(n), \ldots, X_{d}(n)\right)$, where $X_{1}, \ldots, X_{d}$ are independent symmetric simple random walks such that $X_{1}(0), \ldots, X_{d}(0)=$ 0 , and $n \geqslant 0$ is an integer and $d \geqslant 3$ is fixed.
(1) Show that $\mathbb{P}[\mathbf{X}(2 n)=(0, \ldots, 0)] \leqslant C n^{-d / 2}$ for all $n \geqslant 1$, where $C$ depends only on $d$.
(2) Show that $\mathbf{X}$ has the origin as a transient state if $d \geqslant 3$.

Solution. (1) Again, we have $\mathbb{P}[\mathbf{X}(2 n)=(0, \ldots, 0)]=\mathbb{P}\left[\cap_{i=1}^{d}\left\{X_{i}(2 n)=0\right\}\right]=\prod_{i=1}^{d} \mathbb{P}\left[X_{i}(2 n)=\right.$ $0]$ by indepedence. We computed in class that $\mathbb{P}\left[X_{i}(2 n)=0\right] \leqslant C_{1} n^{-1 / 2}$ for some $C_{1}>0$. Now take $d$-th powers.
(2) We have (by part (1)) that

$$
\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2 n)=(0, \ldots, 0)]=\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2 n)=(0, \ldots, 0)] \leqslant C \sum_{n=1}^{\infty} n^{-d / 2}
$$

the last of which converges if $d / 2>1$, hence if $d \geqslant 3$. The first identity above follows because a sum of $k$-many $\pm 1$ 's cannot equal 0 if $k$ is odd.
1.5. Asymmetric simple random walk in dimension 1. Suppose $X$ is an asymmetric simple random walk on $\mathbb{Z}$. In particular,

$$
\mathbb{P}[X(n+1)=x \mid X(n)]= \begin{cases}p & x=X(n)+1 \\ 1-p & x=X(n)-1 \\ 0 & \text { else }\end{cases}
$$

where $p \neq \frac{1}{2}$. Suppose $X(0)=0$. Define $S(n)=X(1)+\ldots+X(n)$ to be the random walk with $S(0)=0$.
(1) Show that the process $M_{n}=S(n)-(2 p-1) n$ is a martingale with respect to the sequence $\{X(k)\}_{k \geqslant 1}$. Show that $\left|M_{n+1}-M_{n}\right| \leqslant 4$ for all $n \geqslant 0$.
(2) Show that for some constant $C>0$ independent of $n \geqslant 0$, we have

$$
\mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right] \leqslant \exp \left\{-C n^{1 / 3}\right\}
$$

(3) Show that $\mathbb{P}[S(n)=0] \leqslant \mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right]$ for $n$ large enough. Using the bound $\exp \left\{-C n^{1 / 3}\right\} \leqslant C_{2} n^{-2}$ for some $C_{2}>0$ fixed, deduce that $X$ has 0 as a transient state. (Hint: the assumption $p \neq \frac{1}{2}$ is crucial.)
Solution. (1) For any $n \geqslant 0$, we have

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid X(1), \ldots, X(n)\right] & =\mathbb{E}[X(n+1) \mid X(1), \ldots, X(n)]+S(n)-(2 p-1)-(2 p-1) n \\
& =\mathbb{E}[X(n+1)]-(2 p-1)+S(n)-(2 p-1) n=M_{n} .
\end{aligned}
$$

The first identity follows by definition of $M_{n+1}$ and linearity of conditional expectation (and that $S(n)$ is a function of $X(1), \ldots, X(n)$ ). The second identity follows by independence of $\{X(k)\}_{k}$. The last follows because $\mathbb{E}[X(k+1)]=p-(1-p)=2 p-$ 1. Finally, we note that $\left|M_{n+1}-M_{n}\right|=|2 p-1-X(n+1)| \leqslant 2 p+1+|X(n+1)| \leqslant 4$.
(2) By Azuma and part (1), we know that

$$
\mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right] \leqslant \exp \left\{-C_{1} \frac{n^{4 / 3}}{4 n}\right\}
$$

for some $C_{1}>0$. Now choose $C=C_{1} / 4$.
(3) Note that $S(n)=0$ implies $M_{n}=-(2 p-1) n$. Thus, if $n$ is large enough, say larger than some $n_{0}$, since $2 p-1 \neq 0$ by assumtion, we know that $|(2 p-1) n| \geqslant n^{2 / 3}$. This shows $\mathbb{P}[S(n)=0] \leqslant \mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right]$. By the given bound and part (2), we have
$\sum_{n=1}^{\infty} \mathbb{P}[S(n)=0]=\sum_{n=1}^{n_{0}} \mathbb{P}[S(n)=0]+\sum_{n=n_{0}+1}^{\infty} \mathbb{P}[S(n)=0] \leqslant n_{0}+C_{2} \sum_{n=n_{0}+1}^{\infty} n^{-2}<\infty$.
This gives the transience we are looking for, so we are done.

