Math 154: Probability Theory, HW 8

DUE APRIL 2, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice with Markov chains

1.1. Classification of states. Consider the state space $\{A, B, C, D\}$. For each Markov chain below (specified by its transition matrix), specify which states (i.e. which of A, B, C, D) are recurrent and which are transient. (Recall a transition matrix P has entries given by $P_{ij} = \mathbb{P}[i \rightarrow j]$.)

(1)
$$P_1 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) $P_2 = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & 0 & 0 & \frac{2}{3}\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$

- (3) Find two row vectors π_1 and π_2 of length 4 such that $\pi_1 P_1 = \pi_1$ and $\pi_2 P_1 = \pi_2$. Your two row vectors cannot be scalar multiplies of each (e.g. they must be linearly independent). What do you notice about the sign of each entry in π_1, π_2 ?
- Solution. (1) States 1, 2, 4 are recurrent. Indeed, $\{1,2\}$ and $\{4\}$ are closed and communicating (since $\mathbb{P}[1 \to 2]$ and $\mathbb{P}[2 \to 1]$ are both positive). State 3 is transient, because the probability of entering a closed communicating class $\{4\}$ is positive.
- (2) All states are recurrent. Indeed, P[A → B] and P[B → D] and P[D → C] and P[C → A] are all positive. Thus, there is a positive probability to go from A to any of B, C, D after a finite number of steps, and vice versa. This means the communicating class of A is all of {A, B, C, D}.
- (3) Choose $\pi_1 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ and $\pi_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{pmatrix}$. All entries are non-negative.

1.2. A nice trick in computing long-time behavior of a Markov chain. Consider P_1 from Problem 1.1. We will see that diagonalization from linear algebra is actually useful.

- (1) Compute $\operatorname{Tr} P_1$ and $\det P_1$.
- (2) Compute the eigenvalues of P_1 . (*Hint*: the eigenvalues sum to the trace, and they multiply to the determinant. Use part (3) in Problem 1.1.)
- (3) Label the eigenvalues as $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4$, and let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ be the associated left eigenvectors, so that $\mathbf{v}_i P_1 = \lambda_i \mathbf{v}_i$. Note that $|\lambda_3|, |\lambda_4| < 1$. Deduce that for i = 3, 4, we have $\mathbf{v}_i P_1^n \to \vec{0}$ as $n \to \infty$, where $\vec{0} = (0, 0, 0, 0)$.
- (4) Any vector v can be written as a linear combination v = α₁v₁ + α₂v₂ + α₃v₃ + α₄v₄. Show that vP₁ⁿ → α₁v₁ + α₂v₂ as n → ∞. This shows that the long-time behavior of the P₁ Markov chain is rather simple!
- Solution. (1) We have $\operatorname{Tr} P_1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + 1 = \frac{9}{4}$ and $\det P_1 = 0$, since the first three columns of P_1 are linearly dependent.
- (2) We know two eigenvalues $\lambda_1, \lambda_2 = 1$. Thus, the other eigenvalues satisfy $2+\lambda_3+\lambda_4 = \frac{9}{4}$ and one of λ_3, λ_4 is equal to 0. In particular, we have $\lambda_3 + 2 = \frac{9}{4}$, so $\lambda_3 = \frac{1}{4}$.
- (3) We have $\mathbf{v}_3 P^n = \lambda_3 \mathbf{v}_3 P^{n-1} = \ldots = \lambda_3^n \mathbf{v}_3$. Since $|\lambda_3| < 1$, we have $\lambda_3^n \to 0$, so that $\mathbf{v}_3 P^n \to \vec{0}$. The same is true for λ_4 , though in this case it is easier, since $\mathbf{v}_4 P^n = 0$ as long as $n \ge 1$.
- (4) By linearity of matrix multiplication, we have $\mathbf{v}P_1^n = \alpha_1\mathbf{v}_1P_1^n + \alpha_2\mathbf{v}_2P_1^n + \alpha_3\mathbf{v}_3P_1^n + \alpha_4\mathbf{v}_4P_1^n$. Since $\mathbf{v}_jP_j = \mathbf{v}_j$ for j = 1, 2 (since $\lambda_1, \lambda_2 = 1$), we have $\mathbf{v}P_1^n = \alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \alpha_3\mathbf{v}_3P_1^n + \alpha_4\mathbf{v}_4P_1^n$. Now use part (3).

1.3. Random walk in dimension 2. Let $\mathbf{X}(n) = (X_1(n), X_2(n))$, where X_1, X_2 are independent symmetric simple random walks such that $X_1(0), X_2(0) = 0$ and $n \ge 0$ is an integer. In what follows, you can use the computations from class.

(1) Show that for any $n \ge 0$, we have

$$\mathbb{P}[\mathbf{X}(2n) = (0,0)] = \binom{2n}{n}^2 2^{-4n}$$

Deduce that $\mathbb{P}[\mathbf{X}(2n) = (0,0)] \ge Cn^{-1}$ for all $n \ge 1$, where $C \ge 0$ is some fixed constant. (*Hint*: use independence of X_1, X_2 .)

(2) Show that

$$\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n) = (0,0)] = \infty,$$

and deduce that X has the origin as a recurrent state.

Solution. (1) By independence of X_1, X_2 , we have

$$\mathbb{P}[\mathbf{X}(2n) = (0,0)] = \mathbb{P}[X_1(2n) = 0, X_2(2n) = 0] = \prod_{i=1}^2 \mathbb{P}[X_i(2n) = 0].$$

We computed in class that $\mathbb{P}[X_i(2n) = 0] = \binom{2n}{n} 2^{-2n}$, so the first claim follows. For the second, we computed in class that $\binom{2n}{n} 2^{-n} \ge C_1 n^{-1/2}$. Now square this. (2) We have

$$\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n) = 0, 0] \ge \sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2n) = (0, 0)] \ge C \sum_{n=1}^{\infty} n^{-1},$$

and the last series diverges. Thus, the far LHS of the previous display must diverge as well, which means X has the origin as a recurrent state.

1.4. Random walk in dimensions greater than or equal to 3. Let $\mathbf{X}(n) = (X_1(n), \dots, X_d(n))$, where X_1, \dots, X_d are independent symmetric simple random walks such that $X_1(0), \dots, X_d(0) = 0$, and $n \ge 0$ is an integer and $d \ge 3$ is fixed.

- (1) Show that $\mathbb{P}[\mathbf{X}(2n) = (0, \dots, 0)] \leq Cn^{-d/2}$ for all $n \geq 1$, where C depends only on d.
- (2) Show that X has the origin as a transient state if $d \ge 3$.
- Solution. (1) Again, we have $\mathbb{P}[\mathbf{X}(2n) = (0, \dots, 0)] = \mathbb{P}[\bigcap_{i=1}^{d} \{X_i(2n) = 0\}] = \prod_{i=1}^{d} \mathbb{P}[X_i(2n) = 0]$ by independence. We computed in class that $\mathbb{P}[X_i(2n) = 0] \leq C_1 n^{-1/2}$ for some $C_1 > 0$. Now take *d*-th powers.
- (2) We have (by part (1)) that

$$\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2n) = (0, \dots, 0)] = \sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(2n) = (0, \dots, 0)] \leqslant C \sum_{n=1}^{\infty} n^{-d/2},$$

the last of which converges if d/2 > 1, hence if $d \ge 3$. The first identity above follows because a sum of k-many ± 1 's cannot equal 0 if k is odd.

1.5. Asymmetric simple random walk in dimension 1. Suppose X is an asymmetric simple random walk on \mathbb{Z} . In particular,

$$\mathbb{P}[X(n+1) = x | X(n)] = \begin{cases} p & x = X(n) + 1\\ 1 - p & x = X(n) - 1\\ 0 & \text{else} \end{cases}$$

where $p \neq \frac{1}{2}$. Suppose X(0) = 0. Define $S(n) = X(1) + \ldots + X(n)$ to be the random walk with S(0) = 0.

- (1) Show that the process $M_n = S(n) (2p 1)n$ is a martingale with respect to the sequence $\{X(k)\}_{k \ge 1}$. Show that $|M_{n+1} M_n| \le 4$ for all $n \ge 0$.
- (2) Show that for some constant C > 0 independent of $n \ge 0$, we have

$$\mathbb{P}\left[|M_n| \ge n^{2/3}\right] \le \exp\left\{-Cn^{1/3}\right\}$$

(3) Show that $\mathbb{P}[S(n) = 0] \leq \mathbb{P}[|M_n| \geq n^{2/3}]$ for *n* large enough. Using the bound $\exp\{-Cn^{1/3}\} \leq C_2n^{-2}$ for some $C_2 > 0$ fixed, deduce that *X* has 0 as a transient state. (*Hint*: the assumption $p \neq \frac{1}{2}$ is crucial.)

Solution. (1) For any $n \ge 0$, we have

$$\mathbb{E}[M_{n+1}|X(1),\ldots,X(n)] = \mathbb{E}[X(n+1)|X(1),\ldots,X(n)] + S(n) - (2p-1) - (2p-1)n$$
$$= \mathbb{E}[X(n+1)] - (2p-1) + S(n) - (2p-1)n = M_n.$$

The first identity follows by definition of M_{n+1} and linearity of conditional expectation (and that S(n) is a function of $X(1), \ldots, X(n)$). The second identity follows by independence of $\{X(k)\}_k$. The last follows because $\mathbb{E}[X(k+1)] = p - (1-p) = 2p -$ 1. Finally, we note that $|M_{n+1} - M_n| = |2p - 1 - X(n+1)| \leq 2p + 1 + |X(n+1)| \leq 4$. By Azuma and part (1), we know that

(2) By Azuma and part (1), we know that

$$\mathbb{P}[|M_n| \ge n^{2/3}] \le \exp\left\{-C_1 \frac{n^{4/3}}{4n}\right\}$$

for some $C_1 > 0$. Now choose $C = C_1/4$.

(3) Note that S(n) = 0 implies $M_n = -(2p-1)n$. Thus, if n is large enough, say larger than some n_0 , since $2p-1 \neq 0$ by assumtion, we know that $|(2p-1)n| \ge n^{2/3}$. This shows $\mathbb{P}[S(n) = 0] \le \mathbb{P}[|M_n| \ge n^{2/3}]$. By the given bound and part (2), we have

$$\sum_{n=1}^{\infty} \mathbb{P}[S(n)=0] = \sum_{n=1}^{n_0} \mathbb{P}[S(n)=0] + \sum_{n=n_0+1}^{\infty} \mathbb{P}[S(n)=0] \leqslant n_0 + C_2 \sum_{n=n_0+1}^{\infty} n^{-2} < \infty.$$

This gives the transience we are looking for, so we are done.