
Math 154: Probability Theory, HW 8

DUE APRIL 2, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. SOME PRACTICE WITH MARKOV CHAINS

1.1. Classification of states. Consider the state space {A,B,C,D}. For each Markov
chain below (specified by its transition matrix), specify which states (i.e. which of
A,B,C,D) are recurrent and which are transient. (Recall a transition matrix P has entries
given by Pij = P[i→ j].)
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
(3) Find two row vectors π1 and π2 of length 4 such that π1P1 = π1 and π2P1 = π2.

Your two row vectors cannot be scalar multiplies of each (e.g. they must be linearly
independent). What do you notice about the sign of each entry in π1, π2?

1.2. A nice trick in computing long-time behavior of a Markov chain. Consider P1

from Problem 1.1. We will see that diagonalization from linear algebra is actually useful.
(1) Compute TrP1 and detP1.
(2) Compute the eigenvalues of P1. (Hint: the eigenvalues sum to the trace, and they

multiply to the determinant. Use part (3) in Problem 1.1.)
(3) Label the eigenvalues as λ1 > λ2 > λ3 > λ4, and let v1,v2,v3,v4 be the associated

left eigenvectors, so that viP1 = λivi. Show that |λ3|, |λ4| < 1. Deduce that for
i = 3, 4, we have viP

n
1 → ~0 as n→∞, where ~0 = (0, 0, 0, 0).

(4) Any vector v can be written as a linear combination v = α1v1+α2v2+α3v3+α4v4.
Show that vP n

1 → α1v1 + α2v2 as n → ∞. This shows that the long-time behavior
of the P1 Markov chain is rather simple!

1.3. Random walk in dimension 2. Let X(n) = (X1(n), X2(n)), where X1, X2 are
independent symmetric simple random walks such that X1(0), X2(0) = 0 and n > 0 is
an integer.
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(1) Show that for any n > 0, we have

P[X(2n) = (0, 0)] =

(
2n

n

)2

2−4n.

Deduce that P[X(2n) = (0, 0)] > Cn−1 for all n > 1, where C > 0 is some fixed
constant. (Hint: use independence of X1, X2.)

(2) Show that
∞∑
n=1

P[X(n) = (0, 0)] =∞.

1.4. Random walk in dimensions greater than or equal to 3. Let X(n) = (X1(n), . . . , Xd(n)),
whereX1, . . . , Xd are independent symmetric simple random walks such thatX1(0), . . . , Xd(0) =
0, and n > 0 is an integer and d > 3 is fixed.
(1) Show that P[X(2n) = (0, . . . , 0)] 6 Cn−d/2 for all n > 1, where C depends only on

d.
(2) Show that X if d > 3, then

∞∑
n=1

P[X(n) = (0, . . . , 0)] <∞.

1.5. Asymmetric simple random walk in dimension 1. Suppose {X(n)}n>1 is a se-
quence of i.i.d. random variables such that

P[X(n+ 1) = x] =


p x = 1

1− p x = −1
0 else

where p 6= 1
2
. Define S(n) = X(1) + . . .+X(n) to be the random walk with S(0) = 0.

(1) Show that the process Mn = S(n) − (2p − 1)n is a martingale with respect to the
sequence {X(k)}k>1. Show that |Mn+1 −Mn| 6 10 for all n > 0.

(2) Show that for some constant C > 0 independent of n > 0, we have

P
[
|Mn| > n2/3

]
6 exp

{
−Cn1/3

}
(3) Show that P[S(n) = 0] 6 P[|Mn| > n2/3] for n large enough. Using the bound

exp{−Cn1/3} 6 C2n
−2 for some C2 > 0 fixed, deduce that X has 0 as a transient

state. (Hint: the assumption p 6= 1
2

is crucial.)
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