Math 154: Probability Theory, HW 8

Due April 2, 2024 by 9Am
Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice with Markov chains

1.1. Classification of states. Consider the state space $\{A, B, C, D\}$. For each Markov chain below (specified by its transition matrix), specify which states (i.e. which of $A, B, C, D)$ are recurrent and which are transient. (Recall a transition matrix P has entries given by $P_{i j}=\mathbb{P}[i \rightarrow j]$.)
(1) $P_{1}=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\ 0 & 0 & 0 & 1\end{array}\right)$
(2) $P_{2}=\left(\begin{array}{cccc}0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
(3) Find two row vectors π_{1} and π_{2} of length 4 such that $\pi_{1} P_{1}=\pi_{1}$ and $\pi_{2} P_{1}=\pi_{2}$. Your two row vectors cannot be scalar multiplies of each (e.g. they must be linearly independent). What do you notice about the sign of each entry in π_{1}, π_{2} ?
1.2. A nice trick in computing long-time behavior of a Markov chain. Consider P_{1} from Problem 1.1. We will see that diagonalization from linear algebra is actually useful.
(1) Compute $\operatorname{Tr} P_{1}$ and $\operatorname{det} P_{1}$.
(2) Compute the eigenvalues of P_{1}. (Hint: the eigenvalues sum to the trace, and they multiply to the determinant. Use part (3) in Problem 1.1.)
(3) Label the eigenvalues as $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4}$, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ be the associated left eigenvectors, so that $\mathbf{v}_{i} P_{1}=\lambda_{i} \mathbf{v}_{i}$. Show that $\left|\lambda_{3}\right|,\left|\lambda_{4}\right|<1$. Deduce that for $i=3,4$, we have $\mathbf{v}_{i} P_{1}^{n} \rightarrow \overrightarrow{0}$ as $n \rightarrow \infty$, where $\overrightarrow{0}=(0,0,0,0)$.
(4) Any vector \mathbf{v} can be written as a linear combination $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}$. Show that $\mathbf{v} P_{1}^{n} \rightarrow \alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}$ as $n \rightarrow \infty$. This shows that the long-time behavior of the P_{1} Markov chain is rather simple!
1.3. Random walk in dimension 2. Let $\mathbf{X}(n)=\left(X_{1}(n), X_{2}(n)\right)$, where X_{1}, X_{2} are independent symmetric simple random walks such that $X_{1}(0), X_{2}(0)=0$ and $n \geqslant 0$ is an integer.
(1) Show that for any $n \geqslant 0$, we have

$$
\mathbb{P}[\mathbf{X}(2 n)=(0,0)]=\binom{2 n}{n}^{2} 2^{-4 n}
$$

Deduce that $\mathbb{P}[\mathbf{X}(2 n)=(0,0)] \geqslant C n^{-1}$ for all $n \geqslant 1$, where $C \geqslant 0$ is some fixed constant. (Hint: use independence of X_{1}, X_{2}.)
(2) Show that

$$
\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n)=(0,0)]=\infty
$$

1.4. Random walk in dimensions greater than or equal to 3 . Let $\mathbf{X}(n)=\left(X_{1}(n), \ldots, X_{d}(n)\right)$, where X_{1}, \ldots, X_{d} are independent symmetric simple random walks such that $X_{1}(0), \ldots, X_{d}(0)=$ 0 , and $n \geqslant 0$ is an integer and $d \geqslant 3$ is fixed.
(1) Show that $\mathbb{P}[\mathbf{X}(2 n)=(0, \ldots, 0)] \leqslant C n^{-d / 2}$ for all $n \geqslant 1$, where C depends only on d.
(2) Show that \mathbf{X} if $d \geqslant 3$, then

$$
\sum_{n=1}^{\infty} \mathbb{P}[\mathbf{X}(n)=(0, \ldots, 0)]<\infty
$$

1.5. Asymmetric simple random walk in dimension 1. Suppose $\{X(n)\}_{n \geqslant 1}$ is a sequence of i.i.d. random variables such that

$$
\mathbb{P}[X(n+1)=x]= \begin{cases}p & x=1 \\ 1-p & x=-1 \\ 0 & \text { else }\end{cases}
$$

where $p \neq \frac{1}{2}$. Define $S(n)=X(1)+\ldots+X(n)$ to be the random walk with $S(0)=0$.
(1) Show that the process $M_{n}=S(n)-(2 p-1) n$ is a martingale with respect to the sequence $\{X(k)\}_{k \geqslant 1}$. Show that $\left|M_{n+1}-M_{n}\right| \leqslant 10$ for all $n \geqslant 0$.
(2) Show that for some constant $C>0$ independent of $n \geqslant 0$, we have

$$
\mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right] \leqslant \exp \left\{-C n^{1 / 3}\right\}
$$

(3) Show that $\mathbb{P}[S(n)=0] \leqslant \mathbb{P}\left[\left|M_{n}\right| \geqslant n^{2 / 3}\right]$ for n large enough. Using the bound $\exp \left\{-C n^{1 / 3}\right\} \leqslant C_{2} n^{-2}$ for some $C_{2}>0$ fixed, deduce that X has 0 as a transient state. (Hint: the assumption $p \neq \frac{1}{2}$ is crucial.)

