
Math 154: Probability Theory, HW 7

DUE MARCH 19, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. GETTING TO KNOW THE CENTRAL LIMIT THEOREM

1.1. Approximating a complicated expectation. Let {Xi}∞i=1 be i.i.d. random variables
such that P[Xi = ±1] = 1

2
.

(1) Show that EXi = 0 and Var(Xi) = 1 for all i.
(2) Define YN := N−1/2

∑N
i=1 Xi. Using the central limit theorem, show

lim
N→∞

E|YN | =
w

R
|x| 1√

2π
e−

x2

2 dx.

(3) Compute limN→∞ E|YN | by evaluating the integral in part (2).

Solution. (1) Clearly, we have EXi =
1
2
− 1

2
= 0, and Var(Xi) = EX2

i = 1
2
+ 1

2
= 1.

(2) By (1) and the central limit theorem, we know that E|YN | → E|G| with G ∼ N(0, 1).
But this is the RHS of the proposed identity by definition.

(3) We have
w

R
|x| 1√

2π
e−

x2

2 dx =
2√
2π

w ∞

0
xe−

x2

2 dx

= − 2√
2π

w ∞

0

d

dx
e−

x2

2 dx =

√
2

π
.

□

1



1.2. Approximating a complicated sum. Fix any x ⩾ 0.

(1) Explain why for any k ⩾ 0, we have 2−N
(
N
k

)
= P[SN = k], where SN ∼ Bin(N, 1

2
)

is a sum of N independent Bern(1
2
).

(2) Show that 2SN−N is a sum of N i.i.d. random variables with mean zero and variance
1. Also show that ∑

k:N−1/2|2k−N |⩽x

2−N

(
N

k

)
= P

(
−x ⩽

2SN −N

N1/2
⩽ x

)
(3) Show that as N → ∞, we have∑

k:|2k−N |⩽xN1/2

2−N

(
N

k

)
→

w x

−x

1√
2π

e−
u2

2 du.

(4) (Bonus, +2pt; please do not ask the CAs for help on this one): Show that∑
k:

N−1/2|k−N |⩽x

Nk

k!
e−N →N→∞

w x

−x

1√
2π

e−
u2

2 du.

(Hint: its the same argument; your job is to figure out exactly why.)

Solution. (1) The only way for SN = X1 + . . . + XN (here, Xi are i.i.d. Bernoulli) to
equal k ⩾ 0 is for k of the Xi to be 1 and the rest to be 0. In particular, we have

(
N
k

)
many possibilities. Moreover, each has probability 2−N .

(2) We note that 2SN −N = (2X1 − 1) + . . .+ (2XN − 1), where Xi are i.i.d. Bern(1
2
).

Note that Yi = 2Xi− 1 satisfies EYi = 2EXi− 1 = 1− 1 = 0 and Var(Yi) = EY 2
i =

E(2Xi − 1)2 = 4EX2
i − 4EXi + 1 = 1 (since X2

i = Xi). By part (1), we have∑
k:N−1/2|2k−N |⩽x

2−N

(
N

k

)
=

∑
k:N−1/2|2k−N |⩽x

P (SN = k)

= P
(
N− 1

2 |2SN −N | ⩽ x
)
= P

(
−x ⩽

2SN −N

N1/2
⩽ x

)
,

which finishes the argument.
(3) By part (2), the central limit theorem implies that

P
(
−x ⩽

2SN −N

N1/2
⩽ x

)
→ P (−x ⩽ G ⩽ x) =

w x

−x

1√
2π

e−
u2

2 du,

where G ∼ N(0, 1). Combine this with part (2).
(4) Note that e−NNk/k! = P(SN = k), where SN ∼ Pois(N). Moreover, note that SN

has the same distribution as X1 + . . .+XN , where Xi are i.i.d. Pois(1). Using all of
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this, we have∑
k:N−1/2|k−N |⩽x

Nk

k!
e−N =

∑
k:N−1/2|k−N |⩽x

P (X1 + . . .+XN = k)

= P
(
N−1/2|X1 + . . .+XN −N | ⩽ x

)
= P

(
−x ⩽

(X1 − 1) + . . .+ (XN − 1)

N1/2
⩽ x

)
.

Now, note that EXi − 1 = 1 − 1 and Var(Xi − 1) = Var(Xi) = 1 if Xi ∼ Pois(1).
(Recall that variance is invariant under shift by deterministic constant.) Thus, the
central limit theorem shows that the last line converges to EG with G ∼ N(0, 1), and
we are done.

□
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1.3. Stein’s method. We showed before that if Z ∼ N(0, 1), then for any smooth func-
tion f : R → R, we have Ef ′(Z) = EZf(Z). Conversely, suppose W satisfies the
property that for all smooth functions f , we have Ef ′(W ) = EWf(W ).
(1) Show that EW = 0 and EW 2 = 1 and EW 3 = 0 and EW 4 = 3.
(2) (Bonus, +2pt; please do not ask the CAs for help on this one): Show that W ∼

N(0, 1).
Note that this gives a new way of proving the central limit theorem. There are interpreta-
tions of this method from physics (in fact, the physicists may argue this is the right way
to prove the CLT); please see me if you would like to discuss this.

Solution. (1) Take f(w) = 1 for all w ∈ R. We get 0 = Ef ′(W ) = EWf(W ) = EW .
Now, take f(w) = w for all w ∈ R. We get 1 = Ef ′(W ) = EWf(W ) = EW 2. Next,
take f(w) = w2 for all w ∈ R. We get Ef ′(W ) = 2EW = 0 and EWf(W ) = EW 3,
so that EW 3 = 0. Finally, take f(w) = w3. We get Ef ′(W ) = 3EW 2 = 3 and
EWf(W ) = EW 4, so EW 4 = 3.

(2) We show that EW k = (k − 1)!! if k is even, and EW k = 0 if k is odd. This shows
that W has the same moments as a Gaussian, and thus it must be a Gaussian random
variable. We proceed inductively in k. Suppose k is odd, and EW k = 0. For f(w) =
wk+1, we have Ef ′(W ) = (k + 1)EW k = 0. We also have EWf(W ) = EW k+2.
This shows EW k+2 = 0. This finishes the induction for odd k, since the next odd
integer after k is k + 2. Now, suppose k is even. By the induction assumption, for
f(w) = wk+1, we have Ef ′(W ) = (k + 1)EW k = (k + 1)(k − 1)!! = (k + 1)!!.
We also have EWf(W ) = EW k+2, so that EW k+2 = (k+!)!!. Since the next even
integer after k is k + 2, this completes the induction.

□
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1.4. A little exercise about Fourier transforms. Suppose XN → X and YN → Y in
distribution.
(1) Suppose also that XN , YN are independent for each N , and that X, Y are independent.

Show that XN + YN → X + Y . (Hint: use the Levy continuity theorem)
(2) Give a counterexample to the above when we remove the independence assumptions.

Solution. (1) For any ξ ∈ R, we have Eeiξ(XN+YN ) = EeiξXN eiξYN = EeiξXNEeiξYN since
XN , YN are independent. By the assumed weak convergence, we have EeiξXNEeiξYN →
EeiξXEeiξY = Eeiξ(X+Y ) since X, Y are independent.

(2) Let XN , YN be independent N(0, 1). Then XN → X and YN → −X in distribution,
where X ∼ N(0, 1). Indeed, note that −X has the same distribution as X if X ∼
N(0, 1) (the pdf of N(0, 1) is an even function). But XN + YN ∼ N(0, 2) for all N ,
whereas X + Y = X − X = 0 is not N(0, 2). So, XN + YN cannot converge in
distribution to X + Y .

□
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1.5. The moment method. Let {Xi}∞i=1 be i.i.d. random variables such that EXi = 0
and EX2

i = 1 and E|Xi|3 < ∞ for all i. Define SN = N−1/2(X1 + . . .+XN).
(1) By expanding, show that

ES3
N = N− 3

2

N∑
i=1

EX3
i +N− 3

2

∑
1⩽i ̸=j⩽N

3EX2
i EXj +N− 3

2

∑
i ̸=j,j ̸=k,i̸=k

EXiXjXk.

(2) Show that ES3
N → 0 as N → ∞.

(3) (Bonus, +1pt; please do not ask the CAs for help on this one): Assume now that
E|Xi|4 < ∞ for all i. Show that ES4

N → 3 by the same type of expansion argument.

Solution. (1) We have

S3
N = N−3/2(X1 + . . .+XN)

3 = N− 3
2

N∑
i,j,k=1

XiXjXk.

Take the case where i = j = k; this gives N−3/2
∑

i X
3
i . Take the case where exactly

two of i, j, k are the same; in this case, we have a term of the form X2
i Xj summed

over all i ̸= j, but we also pick up a factor 3 because there are three ways to match
exactly two of i, j, k. Finally, take the case where i, j, k are all distinct; this gives∑

i ̸=j,j ̸=k,i̸=k XiXjXk. Thus, we have

S3
N = N− 3

2

N∑
i=1

X3
i +N− 3

2

∑
1⩽i ̸=j⩽N

3X2
i Xj +N− 3

2

∑
i ̸=j,j ̸=k,i̸=k

XiXjXk.

Now, take expectation (and use linearity of expectation).
(2) Note that EXj = 0 for all j. Thus, by part (1) and the triangle inequality, we have

|ES3
N | ⩽ N− 3

2

N∑
i=1

|EX3
i | ⩽ N− 3

2

N∑
i=1

E|Xi|3 ⩽ CN− 1
2 → 0

where C = E|Xi|3 < ∞ (note Xi are i.i.d.).
(3) By expanding as in part (1) and dropping all terms with a factor of EXj = 0 for some

j, we have

ES4
N = N−2

N∑
i=1

EX4
i + 3N−2

∑
i ̸=j

EX2
i EX2

j .

(Indeed, the number of ways to match each index in {i, j, k, ℓ} with exactly one other
index is 3; it is one of {i, j} or {i, k} or {i, ℓ}.)By assumption, we know EX4

i ⩽ C
for some constant C < ∞. Thus, the first term on the RHS is ⩽ CN−1 → 0. On the
other hand, we have EX2

i = 1, so

3N−2
∑
i ̸=j

EX2
i EX2

j = 3N−2
∑
i ̸=j

1 = 3N−2N(N − 1) = 3− 3N−1 → 3,

so we are done.
□
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