Math 154: Probability Theory, HW 7

Due March 19, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Getting to know the central limit theorem

1.1. Approximating a complicated expectation. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be i.i.d. random variables such that $\mathbb{P}\left[X_{i}= \pm 1\right]=\frac{1}{2}$.
(1) Show that $\mathbb{E} X_{i}=0$ and $\operatorname{Var}\left(X_{i}\right)=1$ for all i.
(2) Define $Y_{N}:=N^{-1 / 2} \sum_{i=1}^{N} X_{i}$. Using the central limit theorem, show

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left|Y_{N}\right|=\int_{\mathbb{R}}|x| \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x
$$

(3) Compute $\lim _{N \rightarrow \infty} \mathbb{E}\left|Y_{N}\right|$ by evaluating the integral in part (2).

Solution. (1) Clearly, we have $\mathbb{E} X_{i}=\frac{1}{2}-\frac{1}{2}=0$, and $\operatorname{Var}\left(X_{i}\right)=\mathbb{E} X_{i}^{2}=\frac{1}{2}+\frac{1}{2}=1$.
(2) By (1) and the central limit theorem, we know that $\mathbb{E}\left|Y_{N}\right| \rightarrow \mathbb{E}|G|$ with $G \sim N(0,1)$. But this is the RHS of the proposed identity by definition.
(3) We have

$$
\begin{aligned}
\int_{\mathbb{R}}|x| \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x & =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-\frac{x^{2}}{2}} \mathrm{~d} x \\
& =-\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x} e^{-\frac{x^{2}}{2}} \mathrm{~d} x=\sqrt{\frac{2}{\pi}}
\end{aligned}
$$

1.2. Approximating a complicated sum. Fix any $x \geqslant 0$.
(1) Explain why for any $k \geqslant 0$, we have $2^{-N}\binom{N}{k}=\mathbb{P}\left[S_{N}=k\right]$, where $S_{N} \sim \operatorname{Bin}\left(N, \frac{1}{2}\right)$ is a sum of N independent $\operatorname{Bern}\left(\frac{1}{2}\right)$.
(2) Show that $2 S_{N}-N$ is a sum of N i.i.d. random variables with mean zero and variance 1. Also show that

$$
\sum_{k: N^{-1 / 2}|2 k-N| \leqslant x} 2^{-N}\binom{N}{k}=\mathbb{P}\left(-x \leqslant \frac{2 S_{N}-N}{N^{1 / 2}} \leqslant x\right)
$$

(3) Show that as $N \rightarrow \infty$, we have

$$
\sum_{k:|2 k-N| \leqslant x N^{1 / 2}} 2^{-N}\binom{N}{k} \rightarrow \int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \mathrm{~d} u .
$$

(4) (Bonus, +2 pt ; please do not ask the CAs for help on this one): Show that

$$
\sum_{\substack{k: \\ N^{-1 / 2}|k-N| \leqslant x}} \frac{N^{k}}{k!} e^{-N} \rightarrow_{N \rightarrow \infty} \int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \mathrm{~d} u
$$

(Hint: its the same argument; your job is to figure out exactly why.)

Solution. (1) The only way for $S_{N}=X_{1}+\ldots+X_{N}$ (here, X_{i} are i.i.d. Bernoulli) to equal $k \geqslant 0$ is for k of the X_{i} to be 1 and the rest to be 0 . In particular, we have $\binom{N}{k}$ many possibilities. Moreover, each has probability 2^{-N}.
(2) We note that $2 S_{N}-N=\left(2 X_{1}-1\right)+\ldots+\left(2 X_{N}-1\right)$, where X_{i} are i.i.d. $\operatorname{Bern}\left(\frac{1}{2}\right)$. Note that $Y_{i}=2 X_{i}-1$ satisfies $\mathbb{E} Y_{i}=2 \mathbb{E} X_{i}-1=1-1=0$ and $\operatorname{Var}\left(Y_{i}\right)=\mathbb{E} Y_{i}^{2}=$ $\mathbb{E}\left(2 X_{i}-1\right)^{2}=4 \mathbb{E} X_{i}^{2}-4 \mathbb{E} X_{i}+1=1\left(\right.$ since $\left.X_{i}^{2}=X_{i}\right)$. By part (1), we have

$$
\begin{aligned}
\sum_{k: N^{-1 / 2}|2 k-N| \leqslant x} 2^{-N}\binom{N}{k} & =\sum_{k: N^{-1 / 2}|2 k-N| \leqslant x} \mathbb{P}\left(S_{N}=k\right) \\
& =\mathbb{P}\left(N^{-\frac{1}{2}}\left|2 S_{N}-N\right| \leqslant x\right)=\mathbb{P}\left(-x \leqslant \frac{2 S_{N}-N}{N^{1 / 2}} \leqslant x\right),
\end{aligned}
$$

which finishes the argument.
(3) By part (2), the central limit theorem implies that

$$
\mathbb{P}\left(-x \leqslant \frac{2 S_{N}-N}{N^{1 / 2}} \leqslant x\right) \rightarrow \mathbb{P}(-x \leqslant G \leqslant x)=\int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \mathrm{~d} u
$$

where $G \sim N(0,1)$. Combine this with part (2).
(4) Note that $e^{-N} N^{k} / k!=\mathbb{P}\left(S_{N}=k\right)$, where $S_{N} \sim \operatorname{Pois}(N)$. Moreover, note that S_{N} has the same distribution as $X_{1}+\ldots+X_{N}$, where X_{i} are i.i.d. Pois(1). Using all of
this, we have

$$
\begin{aligned}
\sum_{k: N^{-1 / 2}|k-N| \leqslant x} \frac{N^{k}}{k!} e^{-N} & =\sum_{k: N^{-1 / 2}|k-N| \leqslant x} \mathbb{P}\left(X_{1}+\ldots+X_{N}=k\right) \\
& =\mathbb{P}\left(N^{-1 / 2}\left|X_{1}+\ldots+X_{N}-N\right| \leqslant x\right) \\
& =\mathbb{P}\left(-x \leqslant \frac{\left(X_{1}-1\right)+\ldots+\left(X_{N}-1\right)}{N^{1 / 2}} \leqslant x\right) .
\end{aligned}
$$

Now, note that $\mathbb{E} X_{i}-1=1-1$ and $\operatorname{Var}\left(X_{i}-1\right)=\operatorname{Var}\left(X_{i}\right)=1$ if $X_{i} \sim \operatorname{Pois}(1)$. (Recall that variance is invariant under shift by deterministic constant.) Thus, the central limit theorem shows that the last line converges to $\mathbb{E} G$ with $G \sim N(0,1)$, and we are done.
1.3. Stein's method. We showed before that if $Z \sim N(0,1)$, then for any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have $\mathbb{E} f^{\prime}(Z)=\mathbb{E} Z f(Z)$. Conversely, suppose W satisfies the property that for all smooth functions f, we have $\mathbb{E} f^{\prime}(W)=\mathbb{E} W f(W)$.
(1) Show that $\mathbb{E} W=0$ and $\mathbb{E} W^{2}=1$ and $\mathbb{E} W^{3}=0$ and $\mathbb{E} W^{4}=3$.
(2) (Bonus, +2 pt ; please do not ask the CAs for help on this one): Show that $W \sim$ $N(0,1)$.
Note that this gives a new way of proving the central limit theorem. There are interpretations of this method from physics (in fact, the physicists may argue this is the right way to prove the CLT); please see me if you would like to discuss this.
Solution. (1) Take $f(w)=1$ for all $w \in \mathbb{R}$. We get $0=\mathbb{E} f^{\prime}(W)=\mathbb{E} W f(W)=\mathbb{E} W$. Now, take $f(w)=w$ for all $w \in \mathbb{R}$. We get $1=\mathbb{E} f^{\prime}(W)=\mathbb{E} W f(W)=\mathbb{E} W^{2}$. Next, take $f(w)=w^{2}$ for all $w \in \mathbb{R}$. We get $\mathbb{E} f^{\prime}(W)=2 \mathbb{E} W=0$ and $\mathbb{E} W f(W)=\mathbb{E} W^{3}$, so that $\mathbb{E} W^{3}=0$. Finally, take $f(w)=w^{3}$. We get $\mathbb{E} f^{\prime}(W)=3 \mathbb{E} W^{2}=3$ and $\mathbb{E} W f(W)=\mathbb{E} W^{4}$, so $\mathbb{E} W^{4}=3$.
(2) We show that $\mathbb{E} W^{k}=(k-1)!$! if k is even, and $\mathbb{E} W^{k}=0$ if k is odd. This shows that W has the same moments as a Gaussian, and thus it must be a Gaussian random variable. We proceed inductively in k. Suppose k is odd, and $\mathbb{E} W^{k}=0$. For $f(w)=$ w^{k+1}, we have $\mathbb{E} f^{\prime}(W)=(k+1) \mathbb{E} W^{k}=0$. We also have $\mathbb{E} W f(W)=\mathbb{E} W^{k+2}$. This shows $\mathbb{E} W^{k+2}=0$. This finishes the induction for odd k, since the next odd integer after k is $k+2$. Now, suppose k is even. By the induction assumption, for $f(w)=w^{k+1}$, we have $\mathbb{E} f^{\prime}(W)=(k+1) \mathbb{E} W^{k}=(k+1)(k-1)!!=(k+1)!!$. We also have $\mathbb{E} W f(W)=\mathbb{E} W^{k+2}$, so that $\mathbb{E} W^{k+2}=(k+!)!$!. Since the next even integer after k is $k+2$, this completes the induction.
1.4. A little exercise about Fourier transforms. Suppose $X_{N} \rightarrow X$ and $Y_{N} \rightarrow Y$ in distribution.
(1) Suppose also that X_{N}, Y_{N} are independent for each N, and that X, Y are independent. Show that $X_{N}+Y_{N} \rightarrow X+Y$. (Hint: use the Levy continuity theorem)
(2) Give a counterexample to the above when we remove the independence assumptions.

Solution. (1) For any $\xi \in \mathbb{R}$, we have $\mathbb{E} e^{i \xi\left(X_{N}+Y_{N}\right)}=\mathbb{E} e^{i \xi X_{N}} e^{i \xi Y_{N}}=\mathbb{E} e^{i \xi X_{N}} \mathbb{E} e^{i \xi Y_{N}}$ since X_{N}, Y_{N} are independent. By the assumed weak convergence, we have $\mathbb{E} e^{i \xi X_{N}} \mathbb{E} e^{i \xi Y_{N}} \rightarrow$ $\mathbb{E} e^{i \xi X} \mathbb{E} e^{i \xi Y}=\mathbb{E} e^{i \xi(X+Y)}$ since X, Y are independent.
(2) Let X_{N}, Y_{N} be independent $N(0,1)$. Then $X_{N} \rightarrow X$ and $Y_{N} \rightarrow-X$ in distribution, where $X \sim N(0,1)$. Indeed, note that $-X$ has the same distribution as X if $X \sim$ $N(0,1)$ (the pdf of $N(0,1)$ is an even function). But $X_{N}+Y_{N} \sim N(0,2)$ for all N, whereas $X+Y=X-X=0$ is not $N(0,2)$. So, $X_{N}+Y_{N}$ cannot converge in distribution to $X+Y$.
1.5. The moment method. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be i.i.d. random variables such that $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i}^{2}=1$ and $\mathbb{E}\left|X_{i}\right|^{3}<\infty$ for all i. Define $S_{N}=N^{-1 / 2}\left(X_{1}+\ldots+X_{N}\right)$.
(1) By expanding, show that

$$
\mathbb{E} S_{N}^{3}=N^{-\frac{3}{2}} \sum_{i=1}^{N} \mathbb{E} X_{i}^{3}+N^{-\frac{3}{2}} \sum_{1 \leqslant i \neq j \leqslant N} 3 \mathbb{E} X_{i}^{2} \mathbb{E} X_{j}+N^{-\frac{3}{2}} \sum_{i \neq j, j \neq k, i \neq k} \mathbb{E} X_{i} X_{j} X_{k}
$$

(2) Show that $\mathbb{E} S_{N}^{3} \rightarrow 0$ as $N \rightarrow \infty$.
(3) (Bonus, +1 pt ; please do not ask the CAs for help on this one): Assume now that $\mathbb{E}\left|X_{i}\right|^{4}<\infty$ for all i. Show that $\mathbb{E} S_{N}^{4} \rightarrow 3$ by the same type of expansion argument.

Solution. (1) We have

$$
S_{N}^{3}=N^{-3 / 2}\left(X_{1}+\ldots+X_{N}\right)^{3}=N^{-\frac{3}{2}} \sum_{i, j, k=1}^{N} X_{i} X_{j} X_{k}
$$

Take the case where $i=j=k$; this gives $N^{-3 / 2} \sum_{i} X_{i}^{3}$. Take the case where exactly two of i, j, k are the same; in this case, we have a term of the form $X_{i}^{2} X_{j}$ summed over all $i \neq j$, but we also pick up a factor 3 because there are three ways to match exactly two of i, j, k. Finally, take the case where i, j, k are all distinct; this gives $\sum_{i \neq j, j \neq k, i \neq k} X_{i} X_{j} X_{k}$. Thus, we have

$$
S_{N}^{3}=N^{-\frac{3}{2}} \sum_{i=1}^{N} X_{i}^{3}+N^{-\frac{3}{2}} \sum_{1 \leqslant i \neq j \leqslant N} 3 X_{i}^{2} X_{j}+N^{-\frac{3}{2}} \sum_{i \neq j, j \neq k, i \neq k} X_{i} X_{j} X_{k}
$$

Now, take expectation (and use linearity of expectation).
(2) Note that $\mathbb{E} X_{j}=0$ for all j. Thus, by part (1) and the triangle inequality, we have

$$
\left|\mathbb{E} S_{N}^{3}\right| \leqslant N^{-\frac{3}{2}} \sum_{i=1}^{N}\left|\mathbb{E} X_{i}^{3}\right| \leqslant N^{-\frac{3}{2}} \sum_{i=1}^{N} \mathbb{E}\left|X_{i}\right|^{3} \leqslant C N^{-\frac{1}{2}} \rightarrow 0
$$

where $C=\mathbb{E}\left|X_{i}\right|^{3}<\infty$ (note X_{i} are i.i.d.).
(3) By expanding as in part (1) and dropping all terms with a factor of $\mathbb{E} X_{j}=0$ for some j, we have

$$
\mathbb{E} S_{N}^{4}=N^{-2} \sum_{i=1}^{N} \mathbb{E} X_{i}^{4}+3 N^{-2} \sum_{i \neq j} \mathbb{E} X_{i}^{2} \mathbb{E} X_{j}^{2}
$$

(Indeed, the number of ways to match each index in $\{i, j, k, \ell\}$ with exactly one other index is 3 ; it is one of $\{i, j\}$ or $\{i, k\}$ or $\{i, \ell\}$.)By assumption, we know $\mathbb{E} X_{i}^{4} \leqslant C$ for some constant $C<\infty$. Thus, the first term on the RHS is $\leqslant C N^{-1} \rightarrow 0$. On the other hand, we have $\mathbb{E} X_{i}^{2}=1$, so

$$
3 N^{-2} \sum_{i \neq j} \mathbb{E} X_{i}^{2} \mathbb{E} X_{j}^{2}=3 N^{-2} \sum_{i \neq j} 1=3 N^{-2} N(N-1)=3-3 N^{-1} \rightarrow 3,
$$

so we are done.

