Math 154: Probability Theory, HW 7

DUE MARCH 19, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. GETTING TO KNOW THE CENTRAL LIMIT THEOREM

1.1. Approximating a complicated expectation. Let {X;}2°, bei.i.d. random variables
such that P[X; = +1] = L.
(1) Show that EX; = 0 and Var(X;) = 1 for all i.
(2) Define Yy := N~ 1/2 ZZ]\LI X;. Using the central limit theorem, show
. |
Jim EJYy| = IR \x|\/%e T dz.

(3) Compute limy_,, E|Yx| by evaluating the integral in part (2).

Solution. (1) Clearly, we have EX; = % — % =0, and Var(X;) = EX? = % + % =1
(2) By (1) and the central limit theorem, we know that E|Yy| — E|G| with G ~ N(0, 1).
But this is the RHS of the proposed identity by definition.

(3) We have
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1.2. Approximating a complicated sum. Fix any z > 0.

(1) Explain why for any k > 0, we have 27V (]IX) = P[Sy = k|, where Sy ~ Bin(N, 1)

is a sum of IV independent Bern(3).
(2) Show that 25 — N is a sum of N i.i.d. random variables with mean zero and variance

1. Also show that
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(3) Show that as N — oo, we have
N | u?
Z 2_N( ) —>j e 2 du.
k —z +/
k:|2k—N|<aN1/2 2m
(4) (Bonus, +2pt; please do not ask the CAs for help on this one): Show that
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(Hint: its the same argument; your job is to figure out exactly why.)

Solution. (1) The only way for Sy = X; + ... + Xy (here, X; are i.i.d. Bernoulli) to
equal £ > 0 is for £ of the X, to be 1 and the rest to be 0. In particular, we have (JZ )
many possibilities. Moreover, each has probability 27,

(2) We note that 2Sy — N = (2X; —1) +... + (2Xy — 1), where X; are i.i.d. Bern(3).
Note that Y; = 2X; — 1 satisfies EY; = 2EX; — 1 =1—1 = 0 and Var(¥;) = EY? =
E(2X; — 1)? =4EX? — 4EX; + 1 = 1 (since X? = X;). By part (1), we have
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which finishes the argument.
(3) By part (2), the central limit theorem implies that
2Sy — N x
P(—xéwéx) %P(—xéGéx):f_gg
where G ~ N (0, 1). Combine this with part (2).
(4) Note that eV N*/k! = P(Sy = k), where Sy ~ Pois(IV). Moreover, note that Sy

has the same distribution as X; + ... + Xy, where X are i.i.d. Pois(1). Using all of
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this, we have

Nk
> e N — Yoo P(X+.. +Xy=k)
kE:N—-1/2|k—N|<z k:N—1/2|k—N|<z
=P(N'?|IX;+...+ Xy — N| < 2)
(Xi—D+...+(Xy—-1)
=P (—x < N1/ < .
Now, note that EX; — 1 = 1 — 1 and Var(X; — 1) = Var(X;) = 1 if X; ~ Pois(1).
(Recall that variance is invariant under shift by deterministic constant.) Thus, the

central limit theorem shows that the last line converges to EG with G ~ N(0, 1), and
we are done.
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1.3. Stein’s method. We showed before that if Z ~ N(0, 1), then for any smooth func-
tion f : R — R, we have Ef'(Z) = EZf(Z). Conversely, suppose IV satisfies the
property that for all smooth functions f, we have Ef' (W) = EW f(W).

(1) Show that EW = 0 and EW? = 1 and EW? = 0 and EW* = 3.

(2) (Bonus, +2pt; please do not ask the CAs for help on this one): Show that W ~
N(0,1).

Note that this gives a new way of proving the central limit theorem. There are interpreta-

tions of this method from physics (in fact, the physicists may argue this is the right way

to prove the CLT); please see me if you would like to discuss this.

Solution. (1) Take f(w) = 1 forallw € R. We get 0 = Ef'(W) = EW f(W) = EW.
Now, take f(w) = wforallw € R. Weget 1 = Ef'(W) = EW f(W) = EW?2. Next,
take f(w) = w? forallw € R. We get Ef’(W) = 2EW = 0 and EW f(W) = EW3,
so that EWW? = 0. Finally, take f(w) = w3. We get Ef'(W) = 3EW? = 3 and
EW f(W) =EW*, so EW* = 3.

(2) We show that EW* = (k — 1)!! if k is even, and EW* = 0 if k is odd. This shows
that 1/ has the same moments as a Gaussian, and thus it must be a Gaussian random
variable. We proceed inductively in k. Suppose k is odd, and EW* = 0. For f(w) =
wrtt, we have Ef/(W) = (k + 1)EW* = 0. We also have EW f(W) = EW**2,
This shows EW**2 = 0. This finishes the induction for odd k, since the next odd
integer after k is k + 2. Now, suppose k is even. By the induction assumption, for
f(w) = w**t, we have Ef' (W) = (k+ DEW* = (k+ 1)(k — D)!! = (k + 1)L
We also have EW f(W) = EW**2, so that EW**2 = (k+!)!l. Since the next even
integer after k is k + 2, this completes the induction.
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1.4. A little exercise about Fourier transforms. Suppose Xy — X and Yy — Y in

distribution.

(1) Suppose also that X, Yy are independent for each /V, and that X, Y are independent.
Show that Xy + Yy — X + Y. (Hint: use the Levy continuity theorem)

(2) Give a counterexample to the above when we remove the independence assumptions.

Solution. (1) Forany ¢ € R, we have Ee¢(Xn+YN) — FeiXn i8N — EelXNEXYN since
Xy, Yy are independent. By the assumed weak convergence, we have Ec®XNEei'N —
EeXEetY = Ee(X+Y) gince X, Y are independent.

(2) Let Xy, Yy be independent N(0,1). Then Xy — X and Yy — —X in distribution,
where X ~ N(0,1). Indeed, note that — X has the same distribution as X if X ~
N(0,1) (the pdf of N (0, 1) is an even function). But Xy + Yy ~ N(0,2) for all N,
whereas X +Y = X — X = 0is not N(0,2). So, Xy + Yy cannot converge in

distributionto X + Y.
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1.5. The moment method. Let { X}, be i.i.d. random variables such that EX; = 0
and EX? = 1 and E|X,|® < oo for all i. Define Sy = N~V2(X; + ...+ Xy).

(1) By expanding, show that

N
ESy =NT:) EX}+N: Y SBEXZEX;+N: Y EXXX.
i=1 1<i#j<N i#£),37k,i#k
(2) Show that ES%, — 0as N — oo.

(3) (Bonus, +1pt; please do not ask the CAs for help on this one): Assume now that
E|X;]* < oo for all 7. Show that ES}, — 3 by the same type of expansion argument.

Solution. (1) We have

N
Sy =NT2(Xi+.. +Xy)P =N Y XXX
irj k=1
Take the case where i = j = k; this gives N=/23". X?. Take the case where exactly
two of 7, j, k are the same; in this case, we have a term of the form XEX ; summed
over all © # 7, but we also pick up a factor 3 because there are three ways to match

exactly two of ¢, 7, k. Finally, take the case where ¢, 7, k are all distinct; this gives
E#L#k#k X;X;X}. Thus, we have

N
SY=NT=IXP+NT: Y OBXEX;+NT: Y XXX
i=1 1<iAj<N i#]. 7k ik
Now, take expectation (and use linearity of expectation).
(2) Note that EX; = 0 for all j. Thus, by part (1) and the triangle inequality, we have

N N
ES} < NEYEXY <N Y EXP<ONTE =0
i=1 i=1

where C' = E|X;|? < oo (note X;; are i.i.d.).
(3) By expanding as in part (1) and dropping all terms with a factor of EX; = 0 for some
J, we have

N
ESy = N2) EX}+3N*Y EX/EX;.
i=1 i#j
(Indeed, the number of ways to match each index in {4, j, k, ¢} with exactly one other
index is 3; it is one of {4, j} or {i, k} or {4, ¢}.)By assumption, we know EX} < C
for some constant C' < co. Thus, the first term on the RHS is < CN~! — 0. On the
other hand, we have EX? = 1, so

BNT?Y EXJEX? =3N ) 1=3NN(N-1)=3-3N"—3,
i#j i#]
so we are done.
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