
Math 154: Probability Theory, HW 6

DUE MARCH 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. TRYING TO PUT EVERYTHING INTO THE LENS OF A MARTINGALE

1.1. An alternative characterization of conditional expectation. Take X1, . . . , XN , Y
a set of random variables. Let f : RN → R be any continuous function. Show that

E[f(X1, . . . , XN) · Y ] = E{E[f(X1, . . . , XN) · Y |X1, . . . , XN ]}
= E{f(X1, . . . , XN)E[Y |X1, . . . , XN ]}.

It turns out that E[Y |X1, . . . , XN ] is the only random variable which depends only on
X1, . . . , XN for which this is true for all continuous f : RN → R. Hence, this is another
definition of conditional expectation.

Solution. The first identity follows by law of total expectation. For the second, once we
condition on X1, . . . , XN , the term f(X1, . . . , XN) becomes constant. Then, use linearity
of conditional expectation. □
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1.2. Law of large numbers, martingale style. It turns out independence is not crucial
for the law of large numbers to hold, and that a martingale is really the underlying struc-
ture in a lot of cases. Let us see why.

Let (MN)N⩾0 be a martingale with respect to the filtration generated by some sequence
(Xn)n⩾0. We will assume supN⩾0 E|MN+1 −MN |2 < ∞ and M0 = 0.

(1) Using MN =
∑N−1

k=0 (Mk+1 −Mk), show that

E|MN |2 =
N−1∑
k=0

E|Mk+1 −Mk|2 ⩽ CN

for some constant C > 0. (Hint: it may help to show that if j < k, then

E[(Mk+1 −Mk)(Mj+1 −Mj)] = E{(Mj+1 −Mj)E[Mk+1 −Mk|X1, . . . , Xk]} = 0.

To show this, it may help to use Problem 1.1 and the martingale property.)
(2) Show that P[|N−1MN | ⩾ ε] ⩽ CN−1ε−2 for any ε > 0 and for some constant C > 0.

(Hint: how does one control the tail probability using a second moment?)
(3) Suppose now that Xn are mean 0 and variance 1. Define YN =

∑N
n=1 Xn and Y0 = 0.

Show that P[|N−1YN | ⩾ ε] ⩽ CN−1ε−2 for some constant C > 0. (This is the law
of large numbers as classically stated, e.g. as in class.)

(4) There is no need to get this right or wrong; you will be given credit for any type of
guess. Suppose that E|MN+1 −MN |2 = 1 for every N ⩾ 0. What do you think the
distribution of N−1/2MN converges to as N → ∞? (We never defined what it meant
for a distribution to converge, so use an intuitive “definition”.)

Solution. (1) By expanding and linearity of expectation, we have

E|MN |2 =
N−1∑
k=0

E|Mk+1 −Mk|2 + 2
∑
j<k

E[(Mk+1 −Mk)(Mj+1 −Mj)].

Note that Mj+1 − Mj is a function of X1, . . . , Xk if k > j by definition of a mar-
tingale. Thus, we can use Problem 1.1 with f(X1, . . . , Xk) = Mj+1 − Mj to get
E[(Mk+1 −Mk)(Mj+1 −Mj)] = E{(Mj+1 −Mj)E[Mk+1 −Mk|X1, . . . , Xk]}. But
this is zero because E[Mk+1−Mk|X1, . . . , Xk] = E[Mk+1|X1, . . . , Xk]−Mk = 0 by
the martingale property. Thus, the last term on the RHS above vanishes, and thus

E|MN |2 =
N−1∑
k=0

E|Mk+1 −Mk|2 ⩽ CN,

where the bound follows by assumption on the second moments of increments.
(2) By Chebyshev, we have P[|N−1MN | ⩾ ε] ⩽ ε−2N−2E|MN |2. By part (1), we know

that E|MN |2 ⩽ CN for some constant C > 0.
(3) Note that YN is a martingale with respect to (Xn)n⩾1. Indeed, E[YN+1|X1, . . . , XN ] =

E[YN |X1, . . . , XN ] + E[XN+1|X1, . . . , XN ] = YN + E[XN+1] = YN . Now, use part
(2).

(4) It “converges” to N(0, 1)!
□
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