Math 154: Probability Theory, HW 6

DUE MARCH 6, 2024 BY 9AM
Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Trying to put everything into the lens of a martingale

1.1. An alternative characterization of conditional expectation. Take X_{1}, \ldots, X_{N}, Y a set of random variables. Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be any continuous function. Show that

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{N}\right) \cdot Y\right] & =\mathbb{E}\left\{\mathbb{E}\left[f\left(X_{1}, \ldots, X_{N}\right) \cdot Y \mid X_{1}, \ldots, X_{N}\right]\right\} \\
& =\mathbb{E}\left\{f\left(X_{1}, \ldots, X_{N}\right) \mathbb{E}\left[Y \mid X_{1}, \ldots, X_{N}\right]\right\}
\end{aligned}
$$

It turns out that $\mathbb{E}\left[Y \mid X_{1}, \ldots, X_{N}\right]$ is the only random variable which depends only on X_{1}, \ldots, X_{N} for which this is true for all continuous $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. Hence, this is another definition of conditional expectation.
Solution. The first identity follows by law of total expectation. For the second, once we condition on X_{1}, \ldots, X_{N}, the term $f\left(X_{1}, \ldots, X_{N}\right)$ becomes constant. Then, use linearity of conditional expectation.
1.2. Law of large numbers, martingale style. It turns out independence is not crucial for the law of large numbers to hold, and that a martingale is really the underlying structure in a lot of cases. Let us see why.

Let $\left(M_{N}\right)_{N \geqslant 0}$ be a martingale with respect to the filtration generated by some sequence $\left(X_{n}\right)_{n \geqslant 0}$. We will assume $\sup _{N \geqslant 0} \mathbb{E}\left|M_{N+1}-M_{N}\right|^{2}<\infty$ and $M_{0}=0$.
(1) Using $M_{N}=\sum_{k=0}^{N-1}\left(M_{k+1}-M_{k}\right)$, show that

$$
\mathbb{E}\left|M_{N}\right|^{2}=\sum_{k=0}^{N-1} \mathbb{E}\left|M_{k+1}-M_{k}\right|^{2} \leqslant C N
$$

for some constant $C>0$. (Hint: it may help to show that if $j<k$, then

$$
\mathbb{E}\left[\left(M_{k+1}-M_{k}\right)\left(M_{j+1}-M_{j}\right)\right]=\mathbb{E}\left\{\left(M_{j+1}-M_{j}\right) \mathbb{E}\left[M_{k+1}-M_{k} \mid X_{1}, \ldots, X_{k}\right]\right\}=0
$$

To show this, it may help to use Problem 1.1 and the martingale property.)
(2) Show that $\mathbb{P}\left[\left|N^{-1} M_{N}\right| \geqslant \varepsilon\right] \leqslant C N^{-1} \varepsilon^{-2}$ for any $\varepsilon>0$ and for some constant $C>0$. (Hint: how does one control the tail probability using a second moment?)
(3) Suppose now that X_{n} are mean 0 and variance 1. Define $Y_{N}=\sum_{n=1}^{N} X_{n}$ and $Y_{0}=0$. Show that $\mathbb{P}\left[\left|N^{-1} Y_{N}\right| \geqslant \varepsilon\right] \leqslant C N^{-1} \varepsilon^{-2}$ for some constant $C>0$. (This is the law of large numbers as classically stated, e.g. as in class.)
(4) There is no need to get this right or wrong; you will be given credit for any type of guess. Suppose that $\mathbb{E}\left|M_{N+1}-M_{N}\right|^{2}=1$ for every $N \geqslant 0$. What do you think the distribution of $N^{-1 / 2} M_{N}$ converges to as $N \rightarrow \infty$? (We never defined what it meant for a distribution to converge, so use an intuitive "definition".)
Solution. (1) By expanding and linearity of expectation, we have

$$
\mathbb{E}\left|M_{N}\right|^{2}=\sum_{k=0}^{N-1} \mathbb{E}\left|M_{k+1}-M_{k}\right|^{2}+2 \sum_{j<k} \mathbb{E}\left[\left(M_{k+1}-M_{k}\right)\left(M_{j+1}-M_{j}\right)\right]
$$

Note that $M_{j+1}-M_{j}$ is a function of X_{1}, \ldots, X_{k} if $k>j$ by definition of a martingale. Thus, we can use Problem 1.1 with $f\left(X_{1}, \ldots, X_{k}\right)=M_{j+1}-M_{j}$ to get $\mathbb{E}\left[\left(M_{k+1}-M_{k}\right)\left(M_{j+1}-M_{j}\right)\right]=\mathbb{E}\left\{\left(M_{j+1}-M_{j}\right) \mathbb{E}\left[M_{k+1}-M_{k} \mid X_{1}, \ldots, X_{k}\right]\right\}$. But this is zero because $\mathbb{E}\left[M_{k+1}-M_{k} \mid X_{1}, \ldots, X_{k}\right]=\mathbb{E}\left[M_{k+1} \mid X_{1}, \ldots, X_{k}\right]-M_{k}=0$ by the martingale property. Thus, the last term on the RHS above vanishes, and thus

$$
\mathbb{E}\left|M_{N}\right|^{2}=\sum_{k=0}^{N-1} \mathbb{E}\left|M_{k+1}-M_{k}\right|^{2} \leqslant C N
$$

where the bound follows by assumption on the second moments of increments.
(2) By Chebyshev, we have $\mathbb{P}\left[\left|N^{-1} M_{N}\right| \geqslant \varepsilon\right] \leqslant \varepsilon^{-2} N^{-2} \mathbb{E}\left|M_{N}\right|^{2}$. By part (1), we know that $\mathbb{E}\left|M_{N}\right|^{2} \leqslant C N$ for some constant $C>0$.
(3) Note that Y_{N} is a martingale with respect to $\left(X_{n}\right)_{n \geqslant 1}$. Indeed, $\mathbb{E}\left[Y_{N+1} \mid X_{1}, \ldots, X_{N}\right]=$ $\mathbb{E}\left[Y_{N} \mid X_{1}, \ldots, X_{N}\right]+\mathbb{E}\left[X_{N+1} \mid X_{1}, \ldots, X_{N}\right]=Y_{N}+\mathbb{E}\left[X_{N+1}\right]=Y_{N}$. Now, use part (2).
(4) It "converges" to $N(0,1)$!

