Math 154: Probability Theory, HW 5

DUE MARCH 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. SOME PRACTICE WITH MARTINGALES

1.1. **Polya's urn.** This is perhaps the most important urn model in probability. An urn contains r red and g green balls, where r, g > 0. A ball is drawn from the urn, its color is noted, it is returned to the urn, and another ball of the same color is also added to the urn. Let R_n denote the number of red balls drawn after n draws.

- (1) Suppose r = 1. Show that $Y_n = \frac{1+R_n}{n+r+g}$ for $n \ge 0$ is a martingale with respect to the filtration generated by $(R_n)_{n\ge 0}$, and show that $\sup_{n\ge 1} |Y_n| \le C$ for some constant C > 0.
- (2) Suppose r, g = 1. Let T be the number of turns that is needed to draw a green ball. Show that $\mathbb{E}\frac{1}{T+2} = \frac{1}{4}$. (Justify the application of any theorem you may be using!)
- Solution. (1) To prove $\sup_n |Y_n| \leq C$, it suffices to note that $R_n \leq n$ for all n, since we can draw at most n red balls in n steps. In particular, this shows $|Y_n| \leq \frac{1+n}{n+r+g} \leq 1$, since $r + g \geq 1$. For the martingale property, we have to check that for any $n \geq 1$, we have $\mathbb{E}[Y_{n+1}|R_1, \ldots, R_n] = Y_n$. By definition, we have

$$Y_{n+1} = \frac{1+R_{n+1}}{n+1+r+g} = \frac{1+R_n+X_{n+1}}{n+1+r+g}$$
$$= \frac{1+R_n}{n+r+g} - (1+R_n)\left(\frac{1}{n+1+r+g} - \frac{1}{n+r+g}\right) + \frac{X_{n+1}}{n+1+r+g}$$
$$= Y_n + \frac{1+R_n}{(n+1+r+g)(n+r+g)} + \frac{X_{n+1}}{n+1+r+g}.$$

where X_{n+1} is 1 is a red ball is drawn at step n + 1 and 0 otherwise. If we condition on R_1, \ldots, R_n , then we know that there are $r + R_n$ red balls and $g + n - R_N$ green balls in the urn at time n before we draw for the (n + 1)-st time. Thus, the probability of $X_{n+1} = 1$ after this conditioning is equal to $\frac{r+R_n}{n+r+q}$, and

$$\mathbb{E}\left[\frac{X_{n+1}}{n+1+r+g}\bigg|R_1,\ldots,R_n\right] = \frac{r+R_n}{(n+r+g)(n+1+r+g)}$$

We now note that if we condition on R_1, \ldots, R_n , then Y_n and R_n are fixed. By combining this with the previous two displays, we have

$$\mathbb{E}[Y_{n+1}|R_1,\dots,R_n] = Y_n - \frac{1+R_n}{(n+1+r+g)(n+r+g)} - \frac{r+R_n}{(n+1+r+g)(n+r+g)}$$

Now use the assumption r = 1 to conclude.

(2) Note that T is a stopping time with respect to the filtration of {R_n}_{n≥0}, since the 1_{T≤n} is constant/deterministic once we condition on R₁,..., R_n for any n ≥ 0. Moreover, we know that Y_n is a uniformly bounded martingale by part (1). Thus, we know that E[Y_T] = E[Y₀]. By definition, this gives

$$\mathbb{E}\left[\frac{1+R_T}{T+2}\right] = \frac{1}{2}.$$

Since T is the number of turns needed to draw a green ball, we know that $R_T = T - 1$. Thus, the previous line becomes $\mathbb{E}\frac{T}{T+2} = 1 - \mathbb{E}\frac{2}{T+2} = \frac{1}{2}$, at which point the claim is immediate.

1.2. Bernstein's inequality. Suppose $X_1, \ldots, X_i, \ldots \sim \text{Bern}(p)$ are i.i.d., and define $Y_i = X_i - p$ for $i = 1, \ldots, N$. Prove that there exists a constant C > 0 such that for any $\varepsilon > 0$, we have

$$\mathbb{P}\left[\left|\frac{1}{\sqrt{N}}\sum_{i=1}^{N}Y_{i}\right| \geq \varepsilon\right] \leq \exp\left[-C\varepsilon^{2}\right].$$

In particular, even though the maximum value of $Y_1 + \ldots + Y_N$ can grow linearly in N, it likes to stay around \sqrt{N} . (*Hint*: the process $S_N = Y_1 + \ldots + Y_N$ is a martingale with respect to the filtration generated by $(X_n)_{n \ge 1}$; check this!)

Solution. Per the hint, let us check that $S_N = Y_1 + \ldots + Y_N$ is a martingale with respect to the proposed filtration. We must check that $\mathbb{E}[S_{N+1}|X_1, \ldots, X_N] = S_N$. To this end, we write $S_{N+1} = S_N + Y_{N+1}$. If we condition on X_1, \ldots, X_N , then Y_1, \ldots, Y_N are fixed, and thus so is S_N . Thus, we have $\mathbb{E}[S_{N+1}|X_1, \ldots, X_N] = S_N + \mathbb{E}[Y_{N+1}|X_1, \ldots, X_N]$. But Y_{N+1} is independent of X_1, \ldots, X_N and mean 0, so $\mathbb{E}[Y_{N+1}|X_1, \ldots, X_N] = \mathbb{E}Y_{N+1} = 0$. Now, it suffices to use the Azuma inequality, since Y_1, \ldots are uniformly bounded in N with probability 1.

1.3. **Maximal version of Bernstein's inequality.** We have shown that the running sum of independent Bernoulli's has "sub-Gaussian behavior" in Problem 1.2. We will show something similar but for the "maximal process".

Recall notation from Problem 1.2. Define $X_N := N^{-\frac{1}{2}} \sup_{1 \le n \le N} |Y_1 + \ldots + Y_n|$.

- (1) Show that for any $p \ge 2$, we have $\mathbb{E}|X_N|^p \le \left(\frac{p}{p-1}\right)^p \mathbb{E}|N^{-\frac{1}{2}}\sum_{i=1}^N Y_i|^p$.
- (2) Use Problem 1.2 and the previous part to show that for some constant C > 0, we have

$$\mathbb{E}|X_N|^{2p} \leqslant \left(\frac{2p}{2p-1}\right)^{2p} (2p-1)!!C^p$$

for any integer $p \ge 1$.

(3) Use the previous part to show that there exists a constant K > 0 such that for any $\varepsilon > 0$, we have

$$\mathbb{P}[|X_N| \ge \varepsilon] \le \exp[-K\varepsilon^2].$$

- Solution. (1) We showed already that $S_N = Y_1 + \ldots + Y_N$ is a martingale with respect to the filtration generated by X_1, \ldots , so that it suffices to just use Doob's maximal inequality.
- (2) By Problem 1.2, and the equivalence of Gaussian moments and Gaussian tail probabilities, we know that E|N^{-1/2} ∑_{i=1}^N Y_i|^p ≤ (2p-1)!!C^p for some constant C. Now, combine this with the part (1).
- (3) We know that $\frac{2p}{2p-1} \leq L$ for all p and for some constant L > 0. Thus, part (2) implies that $\mathbb{E}|X_N|^{2p} \leq (2p-1)!!(CL)^p$. Now use equivalence of Gaussian moments and Gaussian tail probabilities.

1.4. Gambler's ruin for an unfair game. Let $\{X_n\}_{n\geq 1}$ be independent Bern(p) random variables with $p \neq 0, \frac{1}{2}, 1$. Define $S_N = S_{N-1} + (-1)^{1+X_N}$ for $N \geq 1$ and set $S_0 = 0$.

- (1) Show that $M_N = \left(\frac{1-p}{p}\right)^{S_N}$ is a martingale with respect to the filtration generated by $(X_n)_{n \ge 1}$.
- (2) Let τ be the first positive integer such that $S_{\tau} = -a$ or $S_{\tau} = b$ for a, b > 0 fixed. Compute $\mathbb{P}[S_{\tau} = -a]$ in terms of a, b, p.

Solution. (1) We have

$$\mathbb{E}[M_{N+1}|X_1,\ldots,X_N] = \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{S_{N+1}} \middle| X_1,\ldots,X_N\right]$$
$$= \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{S_N} \left(\frac{1-p}{p}\right)^{(-1)^{1+X_{N+1}}} \middle| X_1,\ldots,X_N\right]$$
$$= \left(\frac{1-p}{p}\right)^{S_N} \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{(-1)^{1+X_{N+1}}} \middle| X_1,\ldots,X_N\right].$$

Note the first factor in the last line is just M_N . Since X_i are jointly independent, the expectation in the last line is just $\mathbb{E}[(\frac{1-p}{p})^{(-1)^{1+X_{N+1}}}] = \frac{p}{1-p}(1-p) + \frac{1-p}{p}p = 1$. We conclude that $\mathbb{E}[M_{N+1}|X_1, \dots, X_N] = M_N$, so the martingale property holds.

(2) Note that τ is a stopping time with respect to the filtration generated by X_1, \ldots , since $\mathbf{1}_{\tau \leq n}$ is deterministic once we condition on X_1, \ldots, X_n for any $n \geq 0$. Moreover, note that $|M_n|$ is uniformly bounded for all $n \leq \tau$; indeed, for $n \leq \tau$, we know that S_n is uniformly bounded. Thus, by the optional stopping theorem, we have

$$1 = \mathbb{E}[M_0] = \mathbb{E}[M_\tau] = \left(\frac{1-p}{p}\right)^{-a} \mathbb{P}[S_\tau = -a] + \left(\frac{1-p}{p}\right)^b \mathbb{P}[S_\tau = b].$$

Note that $\mathbb{P}[S_{\tau} = b] = 1 - \mathbb{P}[S_{\tau} = -a]$. Thus, the previous display becomes

$$\mathbb{P}[S_{\tau} = -a]\left\{\left(\frac{1-p}{p}\right)^{-a} - \left(\frac{1-p}{p}\right)^{b}\right\} = 1 - \left(\frac{1-p}{p}\right)^{b}.$$

In particular, we have

$$\mathbb{P}[S_{\tau} = -a] = \frac{1 - \left(\frac{1-p}{p}\right)^{b}}{\left(\frac{1-p}{p}\right)^{-a} - \left(\frac{1-p}{p}\right)^{b}}$$

_	

1.5. The "quadratic" process of a martingale, and the Ito martingale.

- (1) Suppose that $\{X_n\}_{n \ge 1}$ are independent mean zero random variables with variances $\sigma_i^2 = \mathbb{E}X_i^2$. Show that $Y_N := \sum_{i=1}^N X_i^2 \sum_{i=1}^N \sigma_i^2$ with $Y_0 = 0$ is a martingale with respect to the filtration generated by $\{X_n\}_{n \ge 1}$.
- (2) Suppose in addition that X_i are i.i.d. Bern(¹/₂), and define W_i = (-1)^{1+X_i}. For any function f : Z → R, define its Laplacian to be Δf(x) = f(x+1)+f(x-1)-2f(x). Moreover, define Z_N = W₁ + ... + W_N. Show that f(Z_N) ∑^N_{i=1} ¹/₂Δf(Z_i) is a martingale with respect to the filtration generated by {X_n}_{n≥1}.
- Solution. (1) We have E[Y_{N+1}|X₁,...,X_N] = E[Y_N|X₁,...,X_N]+E[X²_{N+1}|X₁,...,X_N]-σ²_{N+1}. The first term is just Y_N since Y_N is a function of just X₁,...,X_N. The second term is just E[X²_{N+1}] σ²_{N+1} = 0 since X_i are independent.
 (2) We have

$$\mathbb{E}\left[f(Z_{N+1}) - \sum_{i=1}^{N} \frac{1}{2}\Delta f(Z_i) \middle| X_1, \dots, X_N\right]$$
$$= \mathbb{E}\left[f(Z_{N+1}) \middle| X_1, \dots, X_N\right] - \sum_{i=1}^{N} \frac{1}{2}\Delta f(Z_i)$$

since Z_1, \ldots, Z_N are fixed after we condition on X_1, \ldots, X_N . Now, note that $Z_{N+1} = Z_N + W_{N+1}$, and W_{N+1} is ± 1 -valued with equal probabilities and independent of X_1, \ldots, X_N . Thus, we have $\mathbb{E}[f(Z_{N+1})|X_1, \ldots, X_N] = \frac{1}{2}f(Z_N + 1) + \frac{1}{2}f(Z_N - 1)$. In particular, we have $\mathbb{E}[f(Z_{N+1})|X_1, \ldots, X_N] - \frac{1}{2}\Delta f(Z_N) = f(Z_N)$, and we get

$$\mathbb{E}\left[f(Z_{N+1}) - \sum_{i=1}^{N} \frac{1}{2}\Delta f(Z_i) \middle| X_1, \dots, X_N\right]$$
$$= f(Z_N) - \sum_{i=1}^{N-1} \frac{1}{2}\Delta f(Z_i).$$

_		_	
		٦	
_	_	_	

1.6. Gaussian tail probabilities implies Gaussian moments. Suppose X is a continuous random variable such that $\mathbb{P}[|X| \ge C] \le \exp\{-KC^2\}$ for all C > 0 (K is just a fixed constant).

(1) Let p be the pdf of X and fix $q \ge 1$. Justify each line in the following:

$$\begin{split} \int_{\mathbb{R}} x^{2q} p(x) dx &= 2q \int_{0}^{\infty} x^{2q} p(x) dx + 2q \int_{0}^{\infty} x^{2q} p(-x) dx \\ &= 2q \int_{0}^{\infty} x^{2q-1} \left(\int_{x}^{\infty} p(u) du \right) dx + 2q \int_{0}^{\infty} x^{2q-1} \left(\int_{x}^{\infty} p(-u) du \right) dx \\ &\leq 4q \int_{0}^{\infty} x^{2q-1} \mathbb{P}[|X| \geqslant x] dx \\ &\leq 4q \int_{0}^{\infty} x^{2q-1} \exp\{-Kx^{2}\} dx. \end{split}$$

(*Hint*: integration-by-parts is your friend.)

- (2) Show that $\mathbb{E}|X|^{2q} \leq 4qK^{-q} \int_0^\infty y^{2q-1} \exp\{-y^2\} dy$. (3) (Bonus, +2pt): Show that $\int_0^\infty y^{2q-1} \exp\{-y^2\} dy \leq C_1(2q-1)!!C_2^q$ for some constants $C_1, C_2 > 0$

Solution. (1) The first line follows by decomposing the integral over \mathbb{R} into integrals over $(-\infty, 0]$ and $[0, \infty)$. The second line follows by integrating-by-parts; indeed,

$$\begin{split} \int_0^\infty x^{2q} p(x) dx &= -\int_0^\infty x^{2q} \left(\frac{d}{dx} \int_x^\infty p(u) du \right) dx \\ &= \left(-x^{2q} \int_x^\infty p(u) du \right) |_{x=0}^{x=\infty} + \int_0^\infty 2q x^{2q-1} \int_x^\infty p(u) du dx. \end{split}$$

The first term is zero, since $x^{2q}|_{x=0}$ is 0, and $\int_x^{\infty} p(u) du \leq \exp\{-Kx^2\}$ goes to zero faster than x^{2q} goes to infinity as $x \to \infty$. For the second integration in the first line, the same argument works. To justify the third line, we just note that $\int_x^{\infty} p(u)du = \mathbb{P}[X \ge x] \le \mathbb{P}[|X| \ge x]$ and $\int_x^{\infty} p(-u)du = \mathbb{P}[X \le -x] \le \mathbb{P}[|X| \ge x]$. The last line holds by assumption.

(2) Using the *u*-substitution $K^{1/2}x = u$, so that $dx = K^{-1/2}du$, we have

$$\int_0^\infty x^{2q-1} \exp\{-Kx^2\} dx = K^{-\frac{2q-1}{2}} \int_0^\infty (K^{\frac{1}{2}}x)^{2q-1} \exp\{-Kx^2\} dx$$
$$= K^{-q} \int_0^\infty y^{2q-1} \exp\{-y^2\} dy.$$