Math 154: Probability Theory, HW 5

Due March 6, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice with martingales

1.1. Polya's urn. This is perhaps the most important urn model in probability. An urn contains r red and g green balls, where $r, g>0$. A ball is drawn from the urn, its color is noted, it is returned to the urn, and another ball of the same color is also added to the urn. Let R_{n} denote the number of red balls drawn after n draws.
(1) Suppose $r=1$. Show that $Y_{n}=\frac{1+R_{n}}{n+r+g}$ for $n \geqslant 0$ is a martingale with respect to the filtration generated by $\left(R_{n}\right)_{n \geqslant 0}$, and show that $\sup _{n \geqslant 1}\left|Y_{n}\right| \leqslant C$ for some constant $C>0$.
(2) Suppose $r, g=1$. Let T be the number of turns that is needed to draw a green ball. Show that $\mathbb{E} \frac{1}{T+2}=\frac{1}{4}$. (Justify the application of any theorem you may be using!)

Solution. (1) To prove $\sup _{n}\left|Y_{n}\right| \leqslant C$, it suffices to note that $R_{n} \leqslant n$ for all n, since we can draw at most n red balls in n steps. In particular, this shows $\left|Y_{n}\right| \leqslant \frac{1+n}{n+r+g} \leqslant 1$, since $r+g \geqslant 1$. For the martingale property, we have to check that for any $n \geqslant 1$, we have $\mathbb{E}\left[Y_{n+1} \mid R_{1}, \ldots, R_{n}\right]=Y_{n}$. By definition, we have

$$
\begin{aligned}
Y_{n+1} & =\frac{1+R_{n+1}}{n+1+r+g}=\frac{1+R_{n}+X_{n+1}}{n+1+r+g} \\
& =\frac{1+R_{n}}{n+r+g}-\left(1+R_{n}\right)\left(\frac{1}{n+1+r+g}-\frac{1}{n+r+g}\right)+\frac{X_{n+1}}{n+1+r+g} \\
& =Y_{n}+\frac{1+R_{n}}{(n+1+r+g)(n+r+g)}+\frac{X_{n+1}}{n+1+r+g} .
\end{aligned}
$$

where X_{n+1} is 1 is a red ball is drawn at step $n+1$ and 0 otherwise. If we condition on R_{1}, \ldots, R_{n}, then we know that there are $r+R_{n}$ red balls and $g+n-R_{N}$ green balls in the urn at time n before we draw for the $(n+1)$-st time. Thus, the probability of $X_{n+1}=1$ after this conditioning is equal to $\frac{r+R_{n}}{n+r+g}$, and

$$
\mathbb{E}\left[\left.\frac{X_{n+1}}{n+1+r+g} \right\rvert\, R_{1}, \ldots, R_{n}\right]=\frac{r+R_{n}}{(n+r+g)(n+1+r+g)} .
$$

We now note that if we condition on R_{1}, \ldots, R_{n}, then Y_{n} and R_{n} are fixed. By combining this with the previous two displays, we have

$$
\mathbb{E}\left[Y_{n+1} \mid R_{1}, \ldots, R_{n}\right]=Y_{n}-\frac{1+R_{n}}{(n+1+r+g)(n+r+g)}-\frac{r+R_{n}}{(n+1+r+g)(n+r+g)} .
$$

Now use the assumption $r=1$ to conclude.
(2) Note that T is a stopping time with respect to the filtration of $\left\{R_{n}\right\}_{n \geqslant 0}$, since the $\mathbf{1}_{T \leqslant n}$ is constant/deterministic once we condition on R_{1}, \ldots, R_{n} for any $n \geqslant 0$. Moreover, we know that Y_{n} is a uniformly bounded martingale by part (1). Thus, we know that $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]$. By definition, this gives

$$
\mathbb{E}\left[\frac{1+R_{T}}{T+2}\right]=\frac{1}{2} .
$$

Since T is the number of turns needed to draw a green ball, we know that $R_{T}=T-1$. Thus, the previous line becomes $\mathbb{E} \frac{T}{T+2}=1-\mathbb{E} \frac{2}{T+2}=\frac{1}{2}$, at which point the claim is immediate.
1.2. Bernstein's inequality. Suppose $X_{1}, \ldots, X_{i}, \ldots \sim \operatorname{Bern}(p)$ are i.i.d., and define $Y_{i}=X_{i}-p$ for $i=1, \ldots, N$. Prove that there exists a constant $C>0$ such that for any $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Y_{i}\right| \geqslant \varepsilon\right] \leqslant \exp \left[-C \varepsilon^{2}\right]
$$

In particular, even though the maximum value of $Y_{1}+\ldots+Y_{N}$ can grow linearly in N, it likes to stay around \sqrt{N}. (Hint: the process $S_{N}=Y_{1}+\ldots+Y_{N}$ is a martingale with respect to the filtration generated by $\left(X_{n}\right)_{n \geqslant 1}$; check this!)
Solution. Per the hint, let us check that $S_{N}=Y_{1}+\ldots+Y_{N}$ is a martingale with respect to the proposed filtration. We must check that $\mathbb{E}\left[S_{N+1} \mid X_{1}, \ldots, X_{N}\right]=S_{N}$. To this end, we write $S_{N+1}=S_{N}+Y_{N+1}$. If we condition on X_{1}, \ldots, X_{N}, then Y_{1}, \ldots, Y_{N} are fixed, and thus so is S_{N}. Thus, we have $\mathbb{E}\left[S_{N+1} \mid X_{1}, \ldots, X_{N}\right]=S_{N}+\mathbb{E}\left[Y_{N+1} \mid X_{1}, \ldots, X_{N}\right]$. But Y_{N+1} is independent of X_{1}, \ldots, X_{N} and mean 0 , so $\mathbb{E}\left[Y_{N+1} \mid X_{1}, \ldots, X_{N}\right]=\mathbb{E} Y_{N+1}=0$. Now, it suffices to use the Azuma inequality, since Y_{1}, \ldots are uniformly bounded in N with probability 1 .
1.3. Maximal version of Bernstein's inequality. We have shown that the running sum of independent Bernoulli's has "sub-Gaussian behavior" in Problem 1.2. We will show something similar but for the "maximal process".

Recall notation from Problem 1.2. Define $X_{N}:=N^{-\frac{1}{2}} \sup _{1 \leqslant n \leqslant N}\left|Y_{1}+\ldots+Y_{n}\right|$.
(1) Show that for any $p \geqslant 2$, we have $\mathbb{E}\left|X_{N}\right|^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left|N^{-\frac{1}{2}} \sum_{i=1}^{N} Y_{i}\right|^{p}$.
(2) Use Problem 1.2 and the previous part to show that for some constant $C>0$, we have

$$
\mathbb{E}\left|X_{N}\right|^{2 p} \leqslant\left(\frac{2 p}{2 p-1}\right)^{2 p}(2 p-1)!!C^{p}
$$

for any integer $p \geqslant 1$.
(3) Use the previous part to show that there exists a constant $K>0$ such that for any $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|X_{N}\right| \geqslant \varepsilon\right] \leqslant \exp \left[-K \varepsilon^{2}\right] .
$$

Solution. (1) We showed already that $S_{N}=Y_{1}+\ldots+Y_{N}$ is a martingale with respect to the filtration generated by X_{1}, \ldots, so that it suffices to just use Doob's maximal inequality.
(2) By Problem 1.2, and the equivalence of Gaussian moments and Gaussian tail probabilities, we know that $\mathbb{E}\left|N^{-1 / 2} \sum_{i=1}^{N} Y_{i}\right|^{p} \leqslant(2 p-1)!!C^{p}$ for some constatnt C. Now, combine this with the part (1).
(3) We know that $\frac{2 p}{2 p-1} \leqslant L$ for all p and for some constant $L>0$. Thus, part (2) implies that $\mathbb{E}\left|X_{N}\right|^{2 p} \leqslant(2 p-1)!!(C L)^{p}$. Now use equivalence of Gaussian moments and Gaussian tail probabilities.
1.4. Gambler's ruin for an unfair game. Let $\left\{X_{n}\right\}_{n \geqslant 1}$ be independent $\operatorname{Bern}(p)$ random variables with $p \neq 0, \frac{1}{2}, 1$. Define $S_{N}=S_{N-1}+(-1)^{1+X_{N}}$ for $N \geqslant 1$ and set $S_{0}=0$.
(1) Show that $M_{N}=\left(\frac{1-p}{p}\right)^{S_{N}}$ is a martingale with respect to the filtration generated by $\left(X_{n}\right)_{n \geqslant 1}$.
(2) Let τ be the first positive integer such that $S_{\tau}=-a$ or $S_{\tau}=b$ for $a, b>0$ fixed. Compute $\mathbb{P}\left[S_{\tau}=-a\right]$ in terms of a, b, p.
Solution. (1) We have

$$
\begin{aligned}
\mathbb{E}\left[M_{N+1} \mid X_{1}, \ldots, X_{N}\right] & =\mathbb{E}\left[\left.\left(\frac{1-p}{p}\right)^{S_{N+1}} \right\rvert\, X_{1}, \ldots, X_{N}\right] \\
& =\mathbb{E}\left[\left.\left(\frac{1-p}{p}\right)^{S_{N}}\left(\frac{1-p}{p}\right)^{(-1)^{1+X_{N+1}}} \right\rvert\, X_{1}, \ldots, X_{N}\right] \\
& =\left(\frac{1-p}{p}\right)^{S_{N}} \mathbb{E}\left[\left.\left(\frac{1-p}{p}\right)^{(-1)^{1+X_{N+1}}} \right\rvert\, X_{1}, \ldots, X_{N}\right] .
\end{aligned}
$$

Note the first factor in the last line is just M_{N}. Since X_{i} are jointly independent, the expectation in the last line is just $\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{(-1)^{1+X_{N+1}}}\right]=\frac{p}{1-p}(1-p)+\frac{1-p}{p} p=1$. We conclude that $\mathbb{E}\left[M_{N+1} \mid X_{1}, \ldots, X_{N}\right]=M_{N}$, so the martingale property holds.
(2) Note that τ is a stopping time with respect to the filtration generated by X_{1}, \ldots, since $\mathbf{1}_{\tau \leqslant n}$ is deterministic once we condition on X_{1}, \ldots, X_{n} for any $n \geqslant 0$. Moreover, note that $\left|M_{n}\right|$ is uniformly bounded for all $n \leqslant \tau$; indeed, for $n \leqslant \tau$, we know that S_{n} is uniformly bounded. Thus, by the optional stopping theorem, we have

$$
1=\mathbb{E}\left[M_{0}\right]=\mathbb{E}\left[M_{\tau}\right]=\left(\frac{1-p}{p}\right)^{-a} \mathbb{P}\left[S_{\tau}=-a\right]+\left(\frac{1-p}{p}\right)^{b} \mathbb{P}\left[S_{\tau}=b\right]
$$

Note that $\mathbb{P}\left[S_{\tau}=b\right]=1-\mathbb{P}\left[S_{\tau}=-a\right]$. Thus, the previous display becomes

$$
\mathbb{P}\left[S_{\tau}=-a\right]\left\{\left(\frac{1-p}{p}\right)^{-a}-\left(\frac{1-p}{p}\right)^{b}\right\}=1-\left(\frac{1-p}{p}\right)^{b}
$$

In particular, we have

$$
\mathbb{P}\left[S_{\tau}=-a\right]=\frac{1-\left(\frac{1-p}{p}\right)^{b}}{\left(\frac{1-p}{p}\right)^{-a}-\left(\frac{1-p}{p}\right)^{b}}
$$

1.5. The "quadratic" process of a martingale, and the Ito martingale.

(1) Suppose that $\left\{X_{n}\right\}_{n \geqslant 1}$ are independent mean zero random variables with variances $\sigma_{i}^{2}=\mathbb{E} X_{i}^{2}$. Show that $Y_{N}:=\sum_{i=1}^{N} X_{i}^{2}-\sum_{i=1}^{N} \sigma_{i}^{2}$ with $Y_{0}=0$ is a martingale with respect to the filtration generated by $\left\{X_{n}\right\}_{n \geqslant 1}$.
(2) Suppose in addition that X_{i} are i.i.d. $\operatorname{Bern}\left(\frac{1}{2}\right)$, and define $W_{i}=(-1)^{1+X_{i}}$. For any function $f: \mathbb{Z} \rightarrow \mathbb{R}$, define its Laplacian to be $\Delta f(x)=f(x+1)+f(x-1)-2 f(x)$. Moreover, define $Z_{N}=W_{1}+\ldots+W_{N}$. Show that $f\left(Z_{N}\right)-\sum_{i=1}^{N} \frac{1}{2} \Delta f\left(Z_{i}\right)$ is a martingale with respect to the filtration generated by $\left\{X_{n}\right\}_{n \geqslant 1}$.
Solution. (1) We have $\mathbb{E}\left[Y_{N+1} \mid X_{1}, \ldots, X_{N}\right]=\mathbb{E}\left[Y_{N} \mid X_{1}, \ldots, X_{N}\right]+\mathbb{E}\left[X_{N+1}^{2} \mid X_{1}, \ldots, X_{N}\right]-$ σ_{N+1}^{2}. The first term is just Y_{N} since Y_{N} is a function of just X_{1}, \ldots, X_{N}. The second term is just $\mathbb{E}\left[X_{N+1}^{2}\right]-\sigma_{N+1}^{2}=0$ since X_{i} are independent.
(2) We have

$$
\begin{aligned}
& \mathbb{E}\left[\left.f\left(Z_{N+1}\right)-\sum_{i=1}^{N} \frac{1}{2} \Delta f\left(Z_{i}\right) \right\rvert\, X_{1}, \ldots, X_{N}\right] \\
& =\mathbb{E}\left[f\left(Z_{N+1}\right) \mid X_{1}, \ldots, X_{N}\right]-\sum_{i=1}^{N} \frac{1}{2} \Delta f\left(Z_{i}\right)
\end{aligned}
$$

since Z_{1}, \ldots, Z_{N} are fixed after we condition on X_{1}, \ldots, X_{N}. Now, note that $Z_{N+1}=$ $Z_{N}+W_{N+1}$, and W_{N+1} is ± 1-valued with equal probabilities and independent of X_{1}, \ldots, X_{N}. Thus, we have $\mathbb{E}\left[f\left(Z_{N+1}\right) \mid X_{1}, \ldots, X_{N}\right]=\frac{1}{2} f\left(Z_{N}+1\right)+\frac{1}{2} f\left(Z_{N}-1\right)$. In particular, we have $\mathbb{E}\left[f\left(Z_{N+1}\right) \mid X_{1}, \ldots, X_{N}\right]-\frac{1}{2} \Delta f\left(Z_{N}\right)=f\left(Z_{N}\right)$, and we get

$$
\begin{aligned}
& \mathbb{E}\left[\left.f\left(Z_{N+1}\right)-\sum_{i=1}^{N} \frac{1}{2} \Delta f\left(Z_{i}\right) \right\rvert\, X_{1}, \ldots, X_{N}\right] \\
& =f\left(Z_{N}\right)-\sum_{i=1}^{N-1} \frac{1}{2} \Delta f\left(Z_{i}\right) .
\end{aligned}
$$

1.6. Gaussian tail probabilities implies Gaussian moments. Suppose X is a continuous random variable such that $\mathbb{P}[|X| \geqslant C] \leqslant \exp \left\{-K C^{2}\right\}$ for all $C>0$ (K is just a fixed constant).
(1) Let p be the pdf of X and fix $q \geqslant 1$. Justify each line in the following:

$$
\begin{aligned}
\int_{\mathbb{R}} x^{2 q} p(x) d x & =2 q \int_{0}^{\infty} x^{2 q} p(x) d x+2 q \int_{0}^{\infty} x^{2 q} p(-x) d x \\
& =2 q \int_{0}^{\infty} x^{2 q-1}\left(\int_{x}^{\infty} p(u) d u\right) d x+2 q \int_{0}^{\infty} x^{2 q-1}\left(\int_{x}^{\infty} p(-u) d u\right) d x \\
& \leqslant 4 q \int_{0}^{\infty} x^{2 q-1} \mathbb{P}[|X| \geqslant x] d x \\
& \leqslant 4 q \int_{0}^{\infty} x^{2 q-1} \exp \left\{-K x^{2}\right\} d x
\end{aligned}
$$

(Hint: integration-by-parts is your friend.)
(2) Show that $\mathbb{E}|X|^{2 q} \leqslant 4 q K^{-q} \int_{0}^{\infty} y^{2 q-1} \exp \left\{-y^{2}\right\} d y$.
(3) (Bonus, +2 pt): Show that $\int_{0}^{\infty} y^{2 q-1} \exp \left\{-y^{2}\right\} d y \leqslant C_{1}(2 q-1)!!C_{2}^{q}$ for some constants $C_{1}, C_{2}>0$.

Solution. (1) The first line follows by decomposing the integral over \mathbb{R} into integrals over $(-\infty, 0]$ and $[0, \infty)$. The second line follows by integrating-by-parts; indeed,

$$
\begin{aligned}
\int_{0}^{\infty} x^{2 q} p(x) d x & =-\int_{0}^{\infty} x^{2 q}\left(\frac{d}{d x} \int_{x}^{\infty} p(u) d u\right) d x \\
& =\left.\left(-x^{2 q} \int_{x}^{\infty} p(u) d u\right)\right|_{x=0} ^{x=\infty}+\int_{0}^{\infty} 2 q x^{2 q-1} \int_{x}^{\infty} p(u) d u d x
\end{aligned}
$$

The first term is zero, since $\left.x^{2 q}\right|_{x=0}$ is 0 , and $\int_{x}^{\infty} p(u) d u \leqslant \exp \left\{-K x^{2}\right\}$ goes to zero faster than $x^{2 q}$ goes to infinity as $x \rightarrow \infty$. For the second integration in the first line, the same argument works. To justify the third line, we just note that $\int_{x}^{\infty} p(u) d u=$ $\mathbb{P}[X \geqslant x] \leqslant \mathbb{P}[|X| \geqslant x]$ and $\int_{x}^{\infty} p(-u) d u=\mathbb{P}[X \leqslant-x] \leqslant \mathbb{P}[|X| \geqslant x]$. The last line holds by assumption.
(2) Using the u-substitution $K^{1 / 2} x=u$, so that $d x=K^{-1 / 2} d u$, we have

$$
\begin{aligned}
\int_{0}^{\infty} x^{2 q-1} \exp \left\{-K x^{2}\right\} d x & =K^{-\frac{2 q-1}{2}} \int_{0}^{\infty}\left(K^{\frac{1}{2}} x\right)^{2 q-1} \exp \left\{-K x^{2}\right\} d x \\
& =K^{-q} \int_{0}^{\infty} y^{2 q-1} \exp \left\{-y^{2}\right\} d y
\end{aligned}
$$

