
Math 154: Probability Theory, HW 5

DUE MARCH 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. SOME PRACTICE WITH MARTINGALES

1.1. Polya’s urn. This is perhaps the most important urn model in probability. An urn
contains r red and g green balls, where r, g > 0. A ball is drawn from the urn, its color is
noted, it is returned to the urn, and another ball of the same color is also added to the urn.
Let Rn denote the number of red balls drawn after n draws.
(1) Suppose r = 1. Show that Yn = 1+Rn

n+r+g
for n ⩾ 0 is a martingale with respect to

the filtration generated by (Rn)n⩾0, and show that supn⩾1 |Yn| ⩽ C for some constant
C > 0.

(2) Suppose r, g = 1. Let T be the number of turns that is needed to draw a green ball.
Show that E 1

T+2
= 1

4
. (Justify the application of any theorem you may be using!)

Solution. (1) To prove supn |Yn| ⩽ C, it suffices to note that Rn ⩽ n for all n, since we
can draw at most n red balls in n steps. In particular, this shows |Yn| ⩽ 1+n

n+r+g
⩽ 1,

since r + g ⩾ 1. For the martingale property, we have to check that for any n ⩾ 1,
we have E[Yn+1|R1, . . . , Rn] = Yn. By definition, we have

Yn+1 =
1 +Rn+1

n+ 1 + r + g
=

1 +Rn +Xn+1

n+ 1 + r + g

=
1 +Rn

n+ r + g
− (1 +Rn)

(
1

n+ 1 + r + g
− 1

n+ r + g

)
+

Xn+1

n+ 1 + r + g

= Yn +
1 +Rn

(n+ 1 + r + g)(n+ r + g)
+

Xn+1

n+ 1 + r + g
.

where Xn+1 is 1 is a red ball is drawn at step n + 1 and 0 otherwise. If we condition
on R1, . . . , Rn, then we know that there are r + Rn red balls and g + n − RN green
balls in the urn at time n before we draw for the (n+1)-st time. Thus, the probability
of Xn+1 = 1 after this conditioning is equal to r+Rn

n+r+g
, and

E
[

Xn+1

n+ 1 + r + g

∣∣∣∣R1, . . . , Rn

]
=

r +Rn

(n+ r + g)(n+ 1 + r + g)
.

We now note that if we condition on R1, . . . , Rn, then Yn and Rn are fixed. By
combining this with the previous two displays, we have

E[Yn+1|R1, . . . , Rn] = Yn −
1 +Rn

(n+ 1 + r + g)(n+ r + g)
− r +Rn

(n+ 1 + r + g)(n+ r + g)
.
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Now use the assumption r = 1 to conclude.
(2) Note that T is a stopping time with respect to the filtration of {Rn}n⩾0, since the 1T⩽n

is constant/deterministic once we condition on R1, . . . , Rn for any n ⩾ 0. Moreover,
we know that Yn is a uniformly bounded martingale by part (1). Thus, we know that
E[YT ] = E[Y0]. By definition, this gives

E
[
1 +RT

T + 2

]
=

1

2
.

Since T is the number of turns needed to draw a green ball, we know that RT = T−1.
Thus, the previous line becomes E T

T+2
= 1− E 2

T+2
= 1

2
, at which point the claim is

immediate.
□
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1.2. Bernstein’s inequality. Suppose X1, . . . , Xi, . . . ∼ Bern(p) are i.i.d., and define
Yi = Xi − p for i = 1, . . . , N . Prove that there exists a constant C > 0 such that for any
ε > 0, we have

P

[∣∣∣∣∣ 1√
N

N∑
i=1

Yi

∣∣∣∣∣ ⩾ ε

]
⩽ exp

[
−Cε2

]
.

In particular, even though the maximum value of Y1 + . . . + YN can grow linearly in N ,
it likes to stay around

√
N . (Hint: the process SN = Y1 + . . . + YN is a martingale with

respect to the filtration generated by (Xn)n⩾1; check this!)

Solution. Per the hint, let us check that SN = Y1+ . . .+YN is a martingale with respect to
the proposed filtration. We must check that E[SN+1|X1, . . . , XN ] = SN . To this end, we
write SN+1 = SN +YN+1. If we condition on X1, . . . , XN , then Y1, . . . , YN are fixed, and
thus so is SN . Thus, we have E[SN+1|X1, . . . , XN ] = SN + E[YN+1|X1, . . . , XN ]. But
YN+1 is independent of X1, . . . , XN and mean 0, so E[YN+1|X1, . . . , XN ] = EYN+1 = 0.
Now, it suffices to use the Azuma inequality, since Y1, . . . are uniformly bounded in N
with probability 1. □
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1.3. Maximal version of Bernstein’s inequality. We have shown that the running sum
of independent Bernoulli’s has “sub-Gaussian behavior” in Problem 1.2. We will show
something similar but for the “maximal process”.

Recall notation from Problem 1.2. Define XN := N− 1
2 sup1⩽n⩽N |Y1 + . . .+ Yn|.

(1) Show that for any p ⩾ 2, we have E|XN |p ⩽
(

p
p−1

)p

E|N− 1
2

∑N
i=1 Yi|p.

(2) Use Problem 1.2 and the previous part to show that for some constant C > 0, we have

E|XN |2p ⩽
(

2p

2p− 1

)2p

(2p− 1)!!Cp

for any integer p ⩾ 1.
(3) Use the previous part to show that there exists a constant K > 0 such that for any

ε > 0, we have

P [|XN | ⩾ ε] ⩽ exp[−Kε2].

Solution. (1) We showed already that SN = Y1 + . . . + YN is a martingale with respect
to the filtration generated by X1, . . ., so that it suffices to just use Doob’s maximal
inequality.

(2) By Problem 1.2, and the equivalence of Gaussian moments and Gaussian tail proba-
bilities, we know that E|N−1/2

∑N
i=1 Yi|p ⩽ (2p− 1)!!Cp for some constatnt C. Now,

combine this with the part (1).
(3) We know that 2p

2p−1
⩽ L for all p and for some constant L > 0. Thus, part (2) implies

that E|XN |2p ⩽ (2p − 1)!!(CL)p. Now use equivalence of Gaussian moments and
Gaussian tail probabilities.

□
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1.4. Gambler’s ruin for an unfair game. Let {Xn}n⩾1 be independent Bern(p) random
variables with p ̸= 0, 1

2
, 1. Define SN = SN−1 + (−1)1+XN for N ⩾ 1 and set S0 = 0.

(1) Show that MN =
(

1−p
p

)SN

is a martingale with respect to the filtration generated by
(Xn)n⩾1.

(2) Let τ be the first positive integer such that Sτ = −a or Sτ = b for a, b > 0 fixed.
Compute P[Sτ = −a] in terms of a, b, p.

Solution. (1) We have

E[MN+1|X1, . . . , XN ] = E

[(
1− p

p

)SN+1

∣∣∣∣∣X1, . . . , XN

]

= E

[(
1− p

p

)SN
(
1− p

p

)(−1)1+XN+1
∣∣∣∣∣X1, . . . , XN

]

=

(
1− p

p

)SN

E

[(
1− p

p

)(−1)1+XN+1
∣∣∣∣∣X1, . . . , XN

]
.

Note the first factor in the last line is just MN . Since Xi are jointly independent, the
expectation in the last line is just E[(1−p

p
)(−1)1+XN+1

] = p
1−p

(1 − p) + 1−p
p
p = 1. We

conclude that E[MN+1|X1, . . . , XN ] = MN , so the martingale property holds.
(2) Note that τ is a stopping time with respect to the filtration generated by X1, . . ., since

1τ⩽n is deterministic once we condition on X1, . . . , Xn for any n ⩾ 0. Moreover,
note that |Mn| is uniformly bounded for all n ⩽ τ ; indeed, for n ⩽ τ , we know that
Sn is uniformly bounded. Thus, by the optional stopping theorem, we have

1 = E[M0] = E[Mτ ] =

(
1− p

p

)−a

P[Sτ = −a] +

(
1− p

p

)b

P[Sτ = b].

Note that P[Sτ = b] = 1− P[Sτ = −a]. Thus, the previous display becomes

P[Sτ = −a]

{(
1− p

p

)−a

−
(
1− p

p

)b
}

= 1−
(
1− p

p

)b

.

In particular, we have

P[Sτ = −a] =
1−

(
1−p
p

)b

(
1−p
p

)−a

−
(

1−p
p

)b

□
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1.5. The “quadratic” process of a martingale, and the Ito martingale.
(1) Suppose that {Xn}n⩾1 are independent mean zero random variables with variances

σ2
i = EX2

i . Show that YN :=
∑N

i=1X
2
i −

∑N
i=1 σ

2
i with Y0 = 0 is a martingale with

respect to the filtration generated by {Xn}n⩾1.
(2) Suppose in addition that Xi are i.i.d. Bern(1

2
), and define Wi = (−1)1+Xi . For any

function f : Z → R, define its Laplacian to be ∆f(x) = f(x+1)+f(x−1)−2f(x).
Moreover, define ZN = W1 + . . . + WN . Show that f(ZN) −

∑N
i=1

1
2
∆f(Zi) is a

martingale with respect to the filtration generated by {Xn}n⩾1.

Solution. (1) We have E[YN+1|X1, . . . , XN ] = E[YN |X1, . . . , XN ]+E[X2
N+1|X1, . . . , XN ]−

σ2
N+1. The first term is just YN since YN is a function of just X1, . . . , XN . The second

term is just E[X2
N+1]− σ2

N+1 = 0 since Xi are independent.
(2) We have

E

[
f(ZN+1)−

N∑
i=1

1

2
∆f(Zi)

∣∣∣∣∣X1, . . . , XN

]

= E [f(ZN+1)|X1, . . . , XN ]−
N∑
i=1

1

2
∆f(Zi)

since Z1, . . . , ZN are fixed after we condition on X1, . . . , XN . Now, note that ZN+1 =
ZN + WN+1, and WN+1 is ±1-valued with equal probabilities and independent of
X1, . . . , XN . Thus, we have E[f(ZN+1)|X1, . . . , XN ] =

1
2
f(ZN + 1) + 1

2
f(ZN − 1).

In particular, we have E[f(ZN+1)|X1, . . . , XN ]− 1
2
∆f(ZN) = f(ZN), and we get

E

[
f(ZN+1)−

N∑
i=1

1

2
∆f(Zi)

∣∣∣∣∣X1, . . . , XN

]

= f(ZN)−
N−1∑
i=1

1

2
∆f(Zi).

□
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1.6. Gaussian tail probabilities implies Gaussian moments. Suppose X is a continu-
ous random variable such that P[|X| ⩾ C] ⩽ exp{−KC2} for all C > 0 (K is just a
fixed constant).
(1) Let p be the pdf of X and fix q ⩾ 1. Justify each line in the following:

w

R
x2qp(x)dx = 2q

w ∞

0
x2qp(x)dx+ 2q

w ∞

0
x2qp(−x)dx

= 2q
w ∞

0
x2q−1

(w ∞

x
p(u)du

)
dx+ 2q

w ∞

0
x2q−1

(w ∞

x
p(−u)du

)
dx

⩽ 4q
w ∞

0
x2q−1P[|X| ⩾ x]dx

⩽ 4q
w ∞

0
x2q−1 exp{−Kx2}dx.

(Hint: integration-by-parts is your friend.)
(2) Show that E|X|2q ⩽ 4qK−q

r∞
0

y2q−1 exp{−y2}dy.
(3) (Bonus, +2pt): Show that

r∞
0

y2q−1 exp{−y2}dy ⩽ C1(2q−1)!!Cq
2 for some constants

C1, C2 > 0.

Solution. (1) The first line follows by decomposing the integral over R into integrals over
(−∞, 0] and [0,∞). The second line follows by integrating-by-parts; indeed,

w ∞

0
x2qp(x)dx = −

w ∞

0
x2q

(
d

dx

w ∞

x
p(u)du

)
dx

=
(
−x2q

w ∞

x
p(u)du

)
|x=∞
x=0 +

w ∞

0
2qx2q−1

w ∞

x
p(u)dudx.

The first term is zero, since x2q|x=0 is 0, and
r∞
x

p(u)du ⩽ exp{−Kx2} goes to zero
faster than x2q goes to infinity as x → ∞. For the second integration in the first line,
the same argument works. To justify the third line, we just note that

r∞
x

p(u)du =

P[X ⩾ x] ⩽ P[|X| ⩾ x] and
r∞
x

p(−u)du = P[X ⩽ −x] ⩽ P[|X| ⩾ x]. The last
line holds by assumption.

(2) Using the u-substitution K1/2x = u, so that dx = K−1/2du, we have
w ∞

0
x2q−1 exp{−Kx2}dx = K− 2q−1

2

w ∞

0
(K

1
2x)2q−1 exp{−Kx2}dx

= K−q
w ∞

0
y2q−1 exp{−y2}dy.

□
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