Math 154: Probability Theory, HW 5

Due March 5, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice with martingales

1.1. Polya's urn. This is perhaps the most important urn model in probability. An urn contains r red and g green balls, where $r, g>0$. A ball is drawn from the urn, its color is noted, it is returned to the urn, and another ball of the same color is also added to the urn. Let R_{n} denote the number of red balls drawn after n draws.
(1) Suppose $r=1$. Show that $Y_{n}=\frac{1+R_{n}}{n+r+g}$ for $n \geqslant 0$ is a martingale with respect to the filtration generated by $\left(R_{n}\right)_{n \geqslant 1}$, and show that $\sup _{n \geqslant 1}\left|Y_{n}\right| \leqslant C$ for some constant $C>0$.
(2) Suppose $r, g=1$. Let T be the number of turns that is needed to draw a green ball. Show that $\mathbb{E} \frac{1}{T+2}=\frac{1}{4}$. (Justify the application of any theorem you may be using!)
1.2. Bernstein's inequality. Suppose $X_{1}, \ldots \sim \operatorname{Bern}(p)$ are i.i.d., and define $Y_{i}=X_{i}-$ p for $i=1, \ldots, N$. Prove that there exists a constant $C>0$ such that for any $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Y_{i}\right| \geqslant \varepsilon\right] \leqslant \exp \left[-C \varepsilon^{2}\right]
$$

In particular, even though the maximum value of $Y_{1}+\ldots+Y_{N}$ can grow linearly in N, it likes to stay around \sqrt{N}. (Hint: the process $S_{N}=Y_{1}+\ldots+Y_{N}$ is a martingale with respect to the filtration generated by $\left(X_{n}\right)_{n \geqslant 1}$; check this!)
1.3. Maximal version of Bernstein's inequality. We have shown that the running sum of independent Bernoulli's has "sub-Gaussian behavior" in Problem 1.2. We will show something similar but for the "maximal process".

Recall notation from Problem 1.2. Define $X_{N}:=N^{-\frac{1}{2}} \sup _{1 \leqslant n \leqslant N}\left|Y_{1}+\ldots+Y_{n}\right|$.
(1) Show that for any $p \geqslant 2$, we have $\mathbb{E}\left|X_{N}\right|^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left|N^{-\frac{1}{2}} \sum_{i=1}^{N} Y_{i}\right|^{p}$.
(2) Use Problem 1.2 and the previous part to show that for some constant $C>0$, we have

$$
\mathbb{E}\left|X_{N}\right|^{2 p} \leqslant\left(\frac{2 p}{2 p-1}\right)^{2 p}(2 p-1)!!C^{p}
$$

for any integer $p \geqslant 1$.
(3) Use the previous part to show that there exists a constant $K>0$ such that for any $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|X_{N}\right| \geqslant \varepsilon\right] \leqslant \exp \left[-K \varepsilon^{2}\right] .
$$

(Hint: see the end of the notes for week 5 for a helpful lemma.)
1.4. Gambler's ruin for an unfair game. Let $\left\{X_{n}\right\}_{n \geqslant 1}$ be independent $\operatorname{Bern}(p)$ random variables with $p \neq 0, \frac{1}{2}, 1$. Define $S_{N}=S_{N-1}+(-1)^{1+X_{N}}$ for $N \geqslant 1$ and set $S_{0}=0$.
(1) Show that $M_{N}=\left(\frac{1-p}{p}\right)^{S_{N}}$ is a martingale with respect to the filtration generated by $\left(X_{n}\right)_{n \geqslant 1}$.
(2) Let τ be the first positive integer such that $S_{\tau}=-a$ or $S_{\tau}=b$ for $a, b>0$ fixed. Compute $\mathbb{P}\left[S_{\tau}=-a\right]$ in terms of a, b, p.

1.5. The "quadratic" process of a martingale, and the Ito martingale.

(1) Suppose that $\left\{X_{n}\right\}_{n \geqslant 1}$ are independent mean zero random variables with variances $\sigma_{i}^{2}=\mathbb{E} X_{i}^{2}$. Show that $Y_{N}:=\sum_{i=1}^{N} X_{i}^{2}-\sum_{i=1}^{N} \sigma_{i}^{2}$ with $Y_{0}=0$ is a martingale with respect to the filtration generated by $\left\{X_{n}\right\}_{n \geqslant 1}$.
(2) Suppose in addition that X_{i} are i.i.d. $\operatorname{Bern}\left(\frac{1}{2}\right)$, and define $W_{i}=(-1)^{1+X_{i}}$. For any function $f: \mathbb{Z} \rightarrow \mathbb{R}$, define its Laplacian to be $\Delta f(x)=f(x+1)+f(x-1)-2 f(x)$. Moreover, define $Z_{N}=W_{1}+\ldots+W_{N}$. Show that $f\left(Z_{N}\right)-\sum_{i=1}^{N-1} \frac{1}{2} \Delta f\left(Z_{i}\right)$ is a martingale with respect to the filtration generated by $\left\{X_{n}\right\}_{n \geqslant 1}$.
1.6. Gaussian tail probabilities implies Gaussian moments. Suppose X is a continuous random variable such that $\mathbb{P}[|X| \geqslant C] \leqslant \exp \left\{-K C^{2}\right\}$ for all $C>0$ (K is just a fixed constant). We showed in class that $\mathbb{E}|X|^{2 q} \leqslant C_{1}(2 q-1)!!C_{2}^{q}$ for all $q \geqslant 1$ and for some $C_{1}, C_{2}>0$ implies $\mathbb{P}[|X| \geqslant C] \leqslant \exp \left\{-K C^{2}\right\}$ for some $K>0$. We now show the converse is true.
(1) Let p be the pdf of X. Show

$$
\begin{aligned}
\int_{\mathbb{R}} x^{2 q} p(x) d x & =\int_{0}^{\infty} x^{2 q} p(x) d x+\int_{0}^{\infty} x^{2 q} p(-x) d x \\
& =2 q \int_{0}^{\infty} x^{2 q-1}\left(\int_{x}^{\infty} p(u) d u\right) d x+2 q \int_{0}^{\infty} x^{2 q-1}\left(\int_{x}^{\infty} p(-u) d u\right) d x \\
& \leqslant 4 q \int_{0}^{\infty} x^{2 q-1} \mathbb{P}[|X| \geqslant x] d x \\
& \leqslant 4 q \int_{0}^{\infty} x^{2 q-1} \exp \left\{-K x^{2}\right\} d x .
\end{aligned}
$$

(Hint: integration-by-parts is your friend.)
(2) Using u-substitution, show that $\mathbb{E}|X|^{2 q} \leqslant 4 q K^{-q} \int_{0}^{\infty} y^{2 q-1} \exp \left\{-y^{2}\right\} d y$.
(3) (Bonus, +2 pt): Show that $\int_{0}^{\infty} y^{2 q-1} \exp \left\{-y^{2}\right\} d y \leqslant C_{1}(2 q-1)!!C_{2}^{q}$ for some constants $C_{1}, C_{2}>0$.

