# Math 154: Probability Theory, HW 4 

## Due Feb 13, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

## 1. Time to get to computations

1.1. Laplace transform of an exponential random variable. Let $X \sim \operatorname{Exp}(\lambda)$ (for $\lambda>0$ ).
(1) Show that $\mathbb{E} e^{\xi X}=\frac{\lambda}{\lambda-\xi}$ for all $0 \leqslant \xi<\lambda$, so that $\mathbb{E} e^{\xi X}$ if and only if $\xi<\lambda$ (you don't need to prove this last claim).
(2) Compute $\mathbb{E} X^{k}$ for $k=0,1,2,3,4$.
(3) Show that for any $\xi \in \mathbb{R}$, we have $\mathbb{E} e^{i \xi X}=\frac{\lambda}{\lambda-i \xi}$ for all $\xi \in \mathbb{R}$.
(1) This part is a direct application of LOTUS:

$$
\begin{aligned}
\mathbb{E} e^{\xi X} & =\int_{0}^{\infty} e^{\xi x} \cdot \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{\xi x-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{-(-\xi+\lambda) x} d x \\
& =\lambda\left[\frac{e^{-(-\xi+\lambda) x}}{-(-\xi+\lambda)}\right]_{0}^{\infty} \\
& =\lambda\left[0+\frac{1}{-\xi+\lambda}\right] \\
& =\frac{\lambda}{\lambda-\xi}
\end{aligned}
$$

(2) For $0 \leqslant \xi<\lambda$ we have $\mathbb{E} e^{\xi X}=\frac{\lambda}{\lambda-\xi}$ by part (1). We can then directly differentiate:

$$
\begin{aligned}
\mathbb{E} X^{0} & =\mathbb{E} 1=1 \\
\mathbb{E} X & =\left.\frac{d}{d \xi} \frac{\lambda}{\lambda-\xi}\right|_{\xi=0}=\left.\frac{\lambda}{(\lambda-\xi)^{2}}\right|_{\xi=0}=\lambda^{-1}, \\
\mathbb{E} X^{2} & =\left.\frac{d}{d \xi} \frac{\lambda}{(\lambda-\xi)^{2}}\right|_{\xi=0}=\left.\frac{2 \lambda}{(\lambda-\xi)^{3}}\right|_{\xi=0}=2 \lambda^{-2}, \\
\mathbb{E} X^{3} & =\left.\frac{d}{d \xi} \frac{2 \lambda}{(\lambda-\xi)^{3}}\right|_{\xi=0}=\left.\frac{6 \lambda}{(\lambda-\xi)^{4}}\right|_{\xi=0}=6 \lambda^{-3}, \\
\mathbb{E} X^{4} & =\left.\frac{d}{d \xi} \frac{6 \lambda}{(\lambda-\xi)^{4}}\right|_{\xi=0}=\left.\frac{24 \lambda}{(\lambda-\xi)^{5}}\right|_{\xi=0}=24 \lambda^{-4} .
\end{aligned}
$$

Here's a slicker way to do it. By Taylor expansion, we have

$$
\begin{aligned}
\mathbb{E} e^{\xi X} & =\frac{\lambda}{-\xi+\lambda} \\
& =\frac{1}{1-\left(\frac{\xi}{\lambda}\right)} \\
& =\sum_{k=0}^{\infty}\left(\frac{\xi}{\lambda}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{k!}{\lambda^{k}} \cdot \frac{\xi^{k}}{k!},
\end{aligned}
$$

which directly implies that

$$
\mathbb{E} X^{k}=\frac{d^{k}}{d \xi^{k}} \sum_{j=0}^{\infty} \frac{\xi^{j}}{\lambda^{j}}=\frac{j!}{\lambda^{j}}
$$

We compute the moments as follows

$$
\mathbb{E} X^{0}=1, \mathbb{E} X^{1}=\frac{1}{\lambda}, \mathbb{E} X^{2}=\frac{2}{\lambda^{2}}, \mathbb{E} X^{3}=\frac{6}{\lambda^{3}}, \mathbb{E} X^{4}=\frac{24}{\lambda^{4}}
$$

(3) A similar proof to part $a$ suffices here (although we should be cautious about complex numbers, they iron out well):

$$
\begin{aligned}
\mathbb{E} e^{i \xi X} & =\int_{0}^{\infty} e^{i \xi x} \cdot \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{i \xi x-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{-(-i \xi+\lambda) x} d x \\
& =\lambda\left[\frac{e^{-(-i \xi+\lambda) x}}{-(-i \xi+\lambda)}\right]_{0}^{\infty} \\
& =\lambda\left[0+\frac{1}{-i \xi+\lambda}\right] \\
& =\frac{\lambda}{\lambda-i \xi} .
\end{aligned}
$$

Since we have

$$
\frac{\lambda}{\lambda-i \xi}=\frac{\lambda(\lambda+i \xi)}{\lambda^{2}+\xi^{2}}=\frac{\lambda^{2}+i \lambda \xi}{\lambda^{2}+\xi^{2}}
$$

note that

$$
\left(\frac{\lambda^{2}}{\lambda^{2}+\xi^{2}}\right)^{2}+\left(\frac{\lambda \xi}{\lambda^{2}+\xi^{2}}\right)^{2}=\frac{\lambda^{4}+\lambda^{2} \xi^{2}}{\left(\lambda^{2}+\xi^{2}\right)^{2}}=\frac{\lambda^{2}}{\lambda^{2}+\xi^{2}} \leqslant 1,
$$

and our second statement is proven.

### 1.2. Laplace transform of a Poisson random variable. Let $X \sim \operatorname{Pois}(\lambda)$.

(1) Show that $\mathbb{E} e^{\xi X}=e^{\lambda\left(e^{\xi}-1\right)}$.
(2) Compute $\mathbb{E} X^{k}$ for $k=1,2,3$.
(3) Use part (1) to show that if $X \sim \operatorname{Pois}(\lambda)$ and $Y \sim \operatorname{Pois}(\mu)$, then $X+Y \sim \operatorname{Pois}(\lambda+\mu)$.
(1) Once again, look to LOTUS:

$$
\begin{aligned}
\mathbb{E} e^{\xi X} & =\sum_{k=0}^{\infty} e^{\xi k} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} e^{\xi k} \cdot \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(e^{\xi} \lambda\right)^{k}}{k!} \\
& =e^{-\lambda} e^{\xi_{\lambda}} \\
& =e^{\lambda\left(e^{\xi}-1\right)} .
\end{aligned}
$$

(2) Now, once again, we have an moment generating function. We can compute successive moments by derivating wrt $\xi$ and simply plugging in $\xi=0$ :

$$
\begin{gathered}
\mathbb{E} X=\left.\lambda e^{\xi} \cdot e^{\lambda\left(e^{\xi}-1\right)}\right|_{\xi=0}=\lambda \\
\mathbb{E} X^{2}=\left.\lambda e^{\xi} \cdot e^{\lambda\left(e^{\xi}-1\right)}\left(\lambda e^{\xi}+1\right)\right|_{\xi=0}=\lambda(\lambda+1) \\
\mathbb{E} X^{3}=\left.\lambda e^{\xi} \cdot e^{\lambda\left(e^{\xi}-1\right)}\left(\lambda^{2} e^{2 \xi}+3 \lambda e^{\xi}+1\right)\right|_{\xi=0}=\lambda\left(\lambda^{2}+3 \lambda+1\right)
\end{gathered}
$$

(3) Note that, as $\mathbb{E} e^{\xi X}$ is a moment generating function, the moment generating function of the sum of two independent random variables is equivalent to the product of their marginal moment generating functions. In other words,

$$
\mathbb{E} e^{\xi(X+Y)}=\mathbb{E} e^{\xi X} \cdot \mathbb{E} e^{\xi Y}=e^{\lambda\left(e^{\xi}-1\right)} \cdot e^{\mu\left(e^{\xi}-1\right)}=e^{(\lambda+\mu)\left(e^{\xi}-1\right)},
$$

which is precisely the moment generating function for a Poisson distribution with parameter $\lambda+\mu$. Since moment generating functions uniquely identify distributions, $X+Y \sim \operatorname{Pois}(\lambda+\mu)$, as desired
1.3. Cauchy distribution. We say that $X \sim$ Cauchy if it is a continuous random variable on $\mathbb{R}$ with pdf $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
(1) Show that $\int_{\mathbb{R}} p(x) d x=1$ using calculus, so that $p(x)$ is actually a pdf. (You can look up the antiderivative of $\frac{1}{1+x^{2}}$ and its properties; this is more just a check for you to do.)
Solution:
We have:

$$
\int_{-\infty}^{\infty} \frac{1}{\pi\left(1+x^{2}\right) d x}=\left.\frac{1}{\pi} \tan ^{-1} x\right|_{-\infty} ^{\infty}=\frac{1}{\pi}\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=1 .
$$

(2) Show that $\mathbb{E}|X|=\infty$.

Solution:

By definition, we have
$\left.\mathbb{E}|X|=\int_{\mathbb{R}} \frac{|x|}{\pi\left(1+x^{2}\right)} d x=2 \int_{0}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x=\int_{1}^{\infty} \frac{1}{\pi y} d y=\frac{1}{\pi} \log \right\rvert\, y \|_{y=0}^{y=\infty}=\infty$,
where the third identity holds by $u$-substitution $y=1+x^{2}$.
(3) Show that for any $\xi \in \mathbb{R}$, we have

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-|\xi|} e^{-i x \xi} d \xi=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Conclude that if $X \sim$ Cauchy, then $\mathbb{E} e^{i \xi X}=e^{-|\xi|}$. Can you briefly explain briefly why this formula alone suggests that $\mathbb{E} X$ is not well-defined?
Solution:
We have:

$$
\int_{-\infty}^{\infty} e^{-|\xi|} e^{-i x \xi} d \xi=\int_{-\infty}^{0} e^{-(-\xi)-i x \xi} d \xi+\int_{0}^{\infty} e^{-\xi-i x \xi} d \xi
$$

Integrating both integrals gives us:

$$
\left.\frac{1}{1-i x} e^{\xi-i x \xi}\right|_{-\infty} ^{0}+\left.\frac{1}{-1-i x} e^{-\xi-i x \xi}\right|_{0} ^{\infty} .
$$

Plugging in 0 to the first expression gives us $\frac{1}{1-i x}$. Evaluating the first expression at $-\infty$ is as follows: $\left.\frac{1}{1-i x} e^{\xi-i x \xi}\right|_{-\infty}=\left.\frac{1}{1-i x}\left(e^{\xi} e^{-i x \xi}\right)\right|_{-\infty}=\frac{1}{1-i \xi} \cdot \frac{e^{i \xi \infty}}{e^{\infty}}$. Now, from Euler's formula, we know that $e^{i \xi \infty}$ is always bounded for any $\xi$ because $\cos$ and $\sin$ are always bounded, and so the denominator $\left(e^{\infty}\right)$ will be the dominating term. Thus, we have that $\left.\frac{1}{1-i x}\left(e^{\xi} e^{-i x \xi}\right)\right|_{-\infty}=0$, giving us that the first expression is equivalent to $\frac{1}{1-i x}$. Evaluating the second expression in a similar fashion gives us that

$$
\left.\frac{1}{-1-i x} e^{-\xi-i x \xi}\right|_{0} ^{\infty}=0-\frac{1}{-1-i x}=\frac{1}{1+i x} .
$$

Thus, we compute that

$$
\frac{1}{1-i x}+\frac{1}{1+i x}=\frac{1+i x+1-i x}{1+x^{2}}=\frac{2}{1+x^{2}}
$$

Multiplying in $\frac{1}{2 \pi}$ gives us the desired equality.
From Theorem 4.7 (Inversion Theorem), we then have that $E\left[e^{i \xi x}\right]=f(\xi)$, where $f(\xi)=e^{-|\xi|}$. Now, recall from Lemma 4.9 that $\left.\frac{d^{k}}{d \xi^{k}} E e^{i \xi X}\right|_{\xi=0}=i^{k} E X^{k}$. Thus, we have that $E X=\left.\frac{1}{i} \cdot \frac{d}{d \xi} E e^{i \xi X}\right|_{\xi=0}=\left.\frac{1}{i} \cdot \frac{d}{d \xi} e^{-|\xi|}\right|_{\xi=0}$. However, $e^{-|\xi|}$ has an undefined derivative at $\xi=0$, which implies that $E X$ isn't well-defined.
1.4. A concentration inequality. Suppose $X_{1}, \ldots, X_{N}$ are i.i.d. random variables (i.e. they are independent and have the same distribution), and suppose $\mathbb{E} X_{i}=0$ and $\mathbb{E} e^{\lambda X_{i}}<$ $\infty$ for all $\lambda \in \mathbb{R}$. Let $Y=\frac{X_{1}+\ldots+X_{N}}{N}$.
(1) Compute $\mathbb{E} e^{\lambda Y}$ in terms of the moment generating functions of $X_{1}, \ldots, X_{N}$.
(2) Show that for any constants $\lambda, c>0$,

$$
\mathbb{P}[|Y| \geqslant c] \leqslant e^{-c \lambda} \mathbb{E} e^{\lambda Y}+e^{-c \lambda} \mathbb{E} e^{-\lambda Y}=e^{-c \lambda}\left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda X_{i}}{N}}+\prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda x_{i}}{N}}\right)
$$

(Hint: the LHS is $\leqslant \mathbb{P}[Y \geqslant c]+\mathbb{P}[-Y \geqslant c]$.)
(3) Using the inequality $e^{x} \leqslant 1+x+x^{2} e^{x}$, show that $\mathbb{E} e^{\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{\lambda^{2}}{N^{2}} \mathbb{E}\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}\right]$.
(4) We will now choose $\lambda=N^{-1 / 2}$. Using the inequality $x^{2} e^{\kappa x} \leqslant e^{2 x}+e^{-2 x}$ for any $x \in$ $\mathbb{R}$ and any $|\kappa| \leqslant 1$, show that $\mathbb{E} X_{i}^{2} e^{\frac{\lambda X_{i}}{N}} \leqslant \mathbb{E} e^{2 X_{i}}+\mathbb{E} e^{-2 X_{i}}$, and thus $\mathbb{E} e^{\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{C}{N}$ for some constant $C$.
(5) You can take for granted that the same argument shows $\mathbb{E} e^{-\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{C}{N}$. Using the inequality $\left(1+\frac{C}{N}\right)^{N} \leqslant e^{C}$, show that $\mathbb{P}[|Y| \geqslant c] \leqslant 2 e^{-c \sqrt{N}} e^{C}$.

## Solution:

(1) For any random variable $X$, let $m_{X}(\lambda)=\mathbb{E} e^{\lambda X}$ be its moment generating function. Then,

$$
\mathbb{E} e^{\lambda Y}=\mathbb{E} e^{\lambda \frac{X_{1}+\cdots+X_{n}}{n}}=\mathbb{E} e^{\lambda\left(\frac{X_{1}}{n}+\cdots+\frac{X_{n}}{n}\right)}=\mathbb{E} e^{\lambda \frac{X_{1}}{n}} \cdots e^{\lambda \frac{X_{n}}{n}} .
$$

Since $X_{1}, \ldots, X_{n}$ are i.i.d., then

$$
\mathbb{E} e^{\lambda \frac{X_{1}}{n}} \cdots e^{\lambda \frac{X_{n}}{n}}=\left(\mathbb{E} e^{\lambda \frac{X_{1}}{n}}\right) \cdots\left(\mathbb{E} e^{\lambda \frac{X_{n}}{n}}\right)=\left(\mathbb{E} e^{\lambda \frac{X_{1}}{n}}\right)^{n}=\prod_{i=1}^{N} \mathbb{E} e^{\lambda \frac{X_{i}}{n}}=\prod_{i=1}^{n} m_{X_{i}}(\lambda / n) .
$$

(2) First, note that

$$
\{|Y| \geq c\}=\{Y \geq c\} \cup\{Y \leq-c\}=\{Y \geq c\} \cup\{-Y \leq c\}
$$

Also, $\{Y \geq c\}$ and $\{-Y \leq c\}$ are disjoint events, so their probabilities add, and we have

$$
\mathbb{P}[|Y| \geq c]=\mathbb{P}[Y \geq c]+\mathbb{P}[-Y \geq c] .
$$

Chebyshev's inequality says that for any random variable $X$ and any increasing function $\varphi$,

$$
\mathbb{P}[X \geq c] \leq \frac{\mathbb{E} \varphi(X)}{\varphi(c)}
$$

Taking $\varphi(t)=e^{\lambda t}$, which is increasing since we are assuming $\lambda>0$ for this part, we have

$$
\mathbb{P}[Y \geq c] \leq \frac{\mathbb{E} e^{\lambda Y}}{e^{\lambda c}}=e^{-c \lambda} \mathbb{E} e^{\lambda Y}
$$

Similarly,

$$
\mathbb{P}[-Y \geq c] \leq \frac{\mathbb{E} e^{\lambda(-Y)}}{e_{5}^{\lambda c}}=e^{-c \lambda} \mathbb{E} e^{-\lambda Y}
$$

Combining this with our result from part (1), we get

$$
\begin{aligned}
\mathbb{P}[|Y| \geq c] & =\mathbb{P}[Y \geq c]+\mathbb{P}[-Y \geq c] \\
& \leq e^{-c \lambda} \mathbb{E} e^{\lambda Y}+e^{-c \lambda} \mathbb{E} e^{-\lambda Y} \\
& =e^{-c \lambda}\left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda x_{i}}{N}}+\prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda x_{i}}{N}}\right) .
\end{aligned}
$$

(3) By the given inequality,

$$
e^{\frac{\lambda x_{i}}{n}} \leq 1+\frac{\lambda X_{i}}{n}+\left(\frac{\lambda X_{i}}{n}\right)^{2} e^{\frac{\lambda x_{i}}{n}}
$$

Thus by linearity of expectation,

$$
\begin{aligned}
\mathbb{E} e^{\frac{\lambda X_{i}}{n}} & \leq \mathbb{E}\left(1+\frac{\lambda X_{i}}{n}+\left(\frac{\lambda X_{i}}{n}\right)^{2} e^{\frac{\lambda X_{i}}{n}}\right) \\
& =1+\frac{\lambda}{n} \mathbb{E} X_{i}+\frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{n}}\right] \\
& =1+\frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{n}}\right]
\end{aligned}
$$

since we're given $\mathbb{E} X_{i}=0$.
(4) Take $\kappa=\frac{\lambda}{N}=\frac{N^{1 / 2}}{N}=\frac{1}{\sqrt{N}}$, so that $X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}=X_{i}^{2} e^{\frac{X_{i}}{\sqrt{N}}}=X_{i}^{2} e^{\kappa X_{i}}$, where we let $\kappa=\frac{1}{\sqrt{N}}$. Note that $|\kappa| \leq 1$, so the inequality given in the problem statement applies. So,

$$
\mathbb{E} X_{i}^{2} e^{\frac{\lambda X_{i}}{N}} \leq \mathbb{E}\left(e^{2 X_{i}}+e^{-2 X_{i}}\right)=\mathbb{E} e^{2 X_{i}}+\mathbb{E} e^{-2 X_{i}}
$$

Since the RHS is a constant, then we can set $C=\mathbb{E} e^{2 X_{i}}+\mathbb{E} e^{-2 X_{i}}$. Now, we use the inequality from the previous part to obtain

$$
\begin{aligned}
\mathbb{E} e^{\frac{\lambda X_{i}}{N}} & \leq 1+\frac{\lambda^{2}}{N^{2}} E\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}\right] \\
& =1+\frac{N}{N^{2}} E\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}\right] \\
& =1+\frac{1}{N} E\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}\right] \\
& \leq 1+\frac{1}{N}\left(\mathbb{E} e^{2 X_{i}}+\mathbb{E} e^{-2 X_{i}}\right) \\
& =1+\frac{C}{N}
\end{aligned}
$$

(5) From part (2),

$$
\mathbb{P}[|Y| \geq c] \leq e^{-c \lambda}\left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda x_{i}}{N}}+\prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda x_{i}}{N}}\right)
$$

From part (4) the inequality that we can take for granted,

$$
\mathbb{E} e^{\frac{\lambda X_{i}}{N}} \leq 1+\frac{C}{N}, \quad \mathbb{E} e^{-\frac{\lambda X_{i}}{N}} \leq 1+\frac{C}{N} .
$$

Continuing, we have

$$
\begin{aligned}
e^{-c \lambda}\left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda X_{i}}{N}}+\prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda X_{i}}{N}}\right) & \leq e^{-c \sqrt{N}}\left(\prod_{i=1}^{N}\left(1+\frac{C}{N}\right)+\prod_{i=1}^{N}\left(1+\frac{C}{N}\right)\right) \\
& =e^{-c \sqrt{N}}\left(2\left(1+\frac{C}{N}\right)^{N}\right)
\end{aligned}
$$

Using the given inequality $\left(1+\frac{C}{N}\right)^{N} \leq e^{C}$, we obtain a final upper-bound of

$$
e^{-c \sqrt{N}}\left(2\left(1+\frac{C}{N}\right)^{N}\right) \leq e^{-c \sqrt{N}}\left(2 e^{C}\right)
$$

Therefore

$$
\mathbb{P}[|Y| \geq c] \leq 2 e^{-c \sqrt{N}} e^{C}
$$

as desired.
1.5. An application of the law of large numbers. Suppose I give you a coin and tell you that the probability of heads is 0.48 . Suppose you want to test if I am right. How many times $N$ do you have to flip this coin to be at least $95 \%$ confident that it is biased towards heads? To be precise:
(1) Let $X_{1}, \ldots, X_{N} \sim \operatorname{Bern}(p)$ with $p=0.48$ be independent. Set $Y=\frac{1}{N} \sum_{i=1}^{N} X_{i}$. Recall $\mathbb{E} Y=p$. Using the bound

$$
\mathbb{P}[|Y-p| \geqslant 0.02] \leqslant \frac{\operatorname{Var}\left(X_{1}\right)}{N(0.02)^{2}}
$$

from class, how large do you have to take $N$ for this probability to be $\leqslant 5 \%$ ?
(2) What if we instead use the following bound (which is what you get when optimizing in Problem 1.4):

$$
\mathbb{P}[|Y-p| \geqslant 0.02] \leqslant 2 e^{-0.02 \sqrt{N}} \mathbb{E} e^{X_{1}}
$$

Which bound produces the smaller $N$ ?

## Solution:

(1) First, we find

$$
\operatorname{Var}\left(X_{1}\right)=\mathbb{E}\left(X_{1}^{2}\right)-\left(\mathbb{E} X_{1}\right)^{2}=p-p^{2}=p(1-p)=0.48 \cdot 0.52=0.2496
$$

Therefore we want to find $N$ such that

$$
\frac{\operatorname{Var}\left(X_{1}\right)}{N(0.02)^{2}}=\frac{0.2496}{N(0.02)^{2}} \leq 0.05
$$

Rearranging, we find

$$
\frac{1}{N} \leq \frac{0.05(0.02)^{2}}{0.2496} \Longrightarrow N \geq \frac{0.2496}{0.05(0.02)^{2}}=12480
$$

So $N$ should be at least 12480 for the probability to be less than $5 \%$.
(2) By LOTUS,

$$
\mathbb{E} e^{X_{1}}=e^{1} \mathbb{P}\left(X_{1}=1\right)+e^{0} \mathbb{P}\left(X_{1}=0\right)=e p+(1-p)
$$

Therefore we want $N$ such that

$$
2 e^{-0.02 \sqrt{N}} \mathbb{E} e^{X_{1}}=2 e^{-0.02 \sqrt{N}}(e p+(1-p)) \leq 0.05
$$

This rearranges to become

$$
\begin{aligned}
e^{-0.02 \sqrt{N}} \leq \frac{0.05}{2(e p+(1-p))} & \Longrightarrow-0.02 \sqrt{N} \leq \log \left(\frac{0.05}{2(e p+(1-p))}\right) \\
& \Longrightarrow \sqrt{N} \geq-\frac{1}{0.02} \log \left(\frac{0.05}{2(e p+(1-p))}\right) \\
& \Longrightarrow N \geq\left(-\frac{1}{0.02} \log \left(\frac{0.05}{2(e p+(1-p))}\right)\right)^{2}
\end{aligned}
$$

Plugging in $p=0.48$ yields

$$
N \geq 46017
$$

The bound from part (1) produces the smaller $N$.

