Math 154: Probability Theory, HW 4

DUE FEB 13, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. TIME TO GET TO COMPUTATIONS

1.1. Laplace transform of an exponential random variable. Let X ~ Exp()\) (for

A > 0).

(1) Show that EetX = %_5 forall 0 < & < ), so that Ee®¥ if and only if £ < A (you don’t
need to prove this last claim).

(2) Compute EX* for k = 0,1, 2,3, 4.

(3) Show that for any £ € R, we have Ee®X = A—ng for all £ € R.

(1) This part is a direct application of LOTUS:
EetX = foo e - Ne M dx
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(2) For 0 < € < X we have Ee®X = ,\%g by part (1). We can then directly differentiate:
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Here’s a slicker way to do it. By Taylor expansion, we have

A
Eet® = ———
TSt
B 1
1 - (%)
-5 (§)
— A
— kg
=2 %
=0
which directly implies that
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We compute the moments as follows
6 24
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(3) A similar proof to part a suffices here (although we should be cautious about complex
numbers, they iron out well):
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and our second statement is proven.

Since we have

note that

1.2. Laplace transform of a Poisson random variable. Let X ~ Pois(\).
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(1) Show that Eet¥ = X<~
(2) Compute EX* for k = 1,2, 3.
(3) Use part (1) to show that if X ~ Pois(\) and Y ~ Pois(u), then X+Y ~ Pois(A+pu).

(1) Once again, look to LOTUS:

Eet¥ = Z ek e

k=0
_ 13
—e )\ee A

_ 6/\(85_1) .

(2) Now, once again, we have an moment generating function. We can compute succes-
sive moments by derivating wrt £ and simply plugging in £ = 0:
EX = \et - 6/\(6571)|§:0 = A
EX? = Xef - M D (e 4+ 1)[emg = A(A + 1)
EX? = e - DA% + 3Xef + 1)|emo = AN + 31 + 1)
(3) Note that, as Ec*¥ is a moment generating function, the moment generating function

of the sum of two independent random variables is equivalent to the product of their
marginal moment generating functions. In other words,

EtXHY) — FebX el — M) | gulef=1) _ ,Octp)(ef—1)

Y
which is precisely the moment generating function for a Poisson distribution with

parameter A + u. Since moment generating functions uniquely identify distributions,
X +Y ~ Pois(A + ), as desired

1.3. Cauchy distribution. We say that X ~ Cauchy if it is a continuous random vari-

able on R with pdf p(z) = -

(1) Show that [, p(x)dz = 1 using calculus, so that p(z) is actually a pdf. (You can look
up the antiderivative of ﬁ and its properties; this is more just a check for you to
do.)

Solution:
We have:

[
=—tan 2| =—-(-—-(|—-%7))=1
—co (1l +a?)dx —oo T \2 2

(2) Show that E|X| = cc.
Solution:



By definition, we have

|| o0 x o 1 1 _

EX|=]| ———dz=2 ——  _dr= —dy = =1 y=00 _
| | jR 71'(]_ + 12) L J; 71.(]_ + {EQ) xr L Ty Y . og ’yHy—O o0,
where the third identity holds by u-substitution y = 1 + x2.

(3) Show that for any £ € R, we have

1 , 1

- —lelp—ingge — _ ~

o jRe ¢l =TT

Conclude that if X ~ Cauchy, then Ee®¥ = ¢/l Can you briefly explain briefly
why this formula alone suggests that EX is not well-defined?

Solution:

We have:

fj:o e*\&le*irﬁdg _ Jlooo 6*(*5)7ix£d£ + LOO efﬁfirédg.

Integrating both integrals gives us:

] R S e
1 -z I el 7 0
Plugging in O to the first expression gives us ﬁ Evaluating the first expression at
—o0 is as follows: ——es~* = 1 (efe7i) ‘ = 4 € Now, from
—ix - —ix o —i& e

Euler’s formula, we know that €?** is always bounded for any ¢ because cos and sin
are always bounded, and so the denominator (e>) will be the dominating term. Thus,

we have that ﬁ (65 et ) ‘ = 0, giving us that the first expression is equivalent
—00
1

to ;——. Evaluating the second expression in a similar fashion gives us that
1,@’5’”500:0— 1. = 1..
—1 - 0 -1 - 14w
Thus, we compute that
1 I l14+w+l—w 2
1 —iz 1t 1+22  1+4+az%

Multiplying in 5- gives us the desired equality.
From Theorem 4.7 (Inversion Theorem), we then have that E[e®®] = f(£), where
F(€) = el Now, recall from Lemma 4.9 that 4 EeX |y = i* EX*. Thus, we

dgk
have that £X = % . d’—éEengk:o = % - Le~l¢l,_y. However, e~ has an undefined

3
derivative at £ = 0, which implies that £/ X isn’t well-defined.

1.4. A concentration inequality. Suppose X1, ..., Xy are i.i.d. random variables (i.e.
they are independent and have the same distribution), and suppose EX; = 0 and Ee*% <
oo forall A € R. Let Y = Xit=din

(1) Compute Ee*Y in terms of the moment generating functions of X7, ..., Xy.
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(2) Show that for any constants A, ¢ > 0,

N N
PIY| > < e OB 4 e PEe ™ = ¢ <H Ee'v" + H]Ee?vx’) ,
i=1 i=1

(Hint: the LHS is < P[Y > ¢] + P[-Y > c].)
(3) Using the inequality e* < 1 4 x + x%e®, show that Ee " <1+ %E[Xfe%]
(4) We will now choose A = N~'/2, Using the inequality 72" < €2* +e~2* for any = €

2 2% 2X; —2X; A% c

R and any |x| < 1, show that EX7e ™ < Ee®% + Ee™*%, and thus Ee ™ <1+ &
for some constant C'. .

(5) You can take for granted that the same argument shows Ee™ ~ < 1+ % Using the

inequality (1 + $)N < e, show that P[|Y] > ¢] < 2e=VNeC.
Solution:

(1) For any random variable X, let mx()\) = Ee¥ be its moment generating function.
Then,

Xq4+-+X X1 X,
EetY = Er o = R TE) Z A LA

Since X, ..., X, areii.d., then

N n
Ee)‘% .. '6)\% = (]E(g)‘%> B (EG)\%> = (Ee)‘%) = H]Ee)‘# = Hle()\/n)
i=1 =1

(2) First, note that
{IY|> e} ={Y > c;U{Y < —c} ={Y > ctU{-Y <c}.
Also, {Y > ¢} and {—Y < ¢} are disjoint events, so their probabilities add, and we
have
PllY| > ¢ =P[Y > ] +P[-Y > (.
Chebyshev’s inequality says that for any random variable X and any increasing func-
tion ¢,

Ep(X
PIX > o < )
p(c)
Taking (t) = e, which is increasing since we are assuming A > 0 for this part, we
have v
]E o)
P[Y Z C] S C)\ _ B_CAEBAY.
e c
Similarly,
EeA=Y)
P[-Y > ¢ c = e e Y.
e C



Combining this with our result from part (1), we get
PIY|> ¢ =PY > +P[-Y > ¢

S e—cA]Ee)\Y +6—CAE€—AY

N AX N AX
= ¢~ (HEGNZ + HEG_N ) .
im1 i=1

(3) By the given inequality,

AX; AX; AX; 2&
en <1+ + e n .

n

Thus by linearity of expectation,

since we're given EX; = 0.

1/2 AX; X4 )
(4) Take v = § = "5~ = =, so that XPe'™ = XfevV = XPe"¥, where we let
1

g =I5 Note that |x| < 1, so the inequality given in the problem statement applies.
o,

AX; ) _9Y. ) _9X.
EXZe ™ < E(e*Y + e %) = Ee*Y + Ee 2V,
Since the RHS is a constant, then we can set C' = Ee?Xi + Ee2%:. Now, we use the
inequality from the previous part to obtain
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(5) From part (2),

N N
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From part (4) the inequality that we can take for granted,

AX; C AX; C
Ee v <1+ —, Ee™ <1l+—.
crEity BT ey

Continuing, we have
N . N o e N c N c

e~ H]EGT—FHE(BT < e VN H<1+N) +H<1+N>
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(0 9))

Using the given inequality (1 + %)N < e, we obtain a final upper-bound of

C N
e VN (2 <1 + N) ) < e VN (2¢).

Therefore
P[] > ¢] < 2e7VVeC,

as desired.

1.5. An application of the law of large numbers. Suppose I give you a coin and tell
you that the probability of heads is 0.48. Suppose you want to test if I am right. How
many times N do you have to flip this coin to be at least 95% confident that it is biased
towards heads? To be precise:

(1) Let Xy,..., Xy ~ Bern(p) with p = 0.48 be independent. SetY = + Zz]il Xi.
Recall EY = p. Using the bound

Var(X;)

N(0.02)?

from class, how large do you have to take N for this probability to be < 5%?

(2) What if we instead use the following bound (which is what you get when optimizing
in Problem 1.4):

P[[Y — p| > 0.02] <

P[lY — p| > 0.02] < 2e *OVNEN,
Which bound produces the smaller N ?

Solution:

(1) First, we find
Var(X;) = E(X}) — (EX,)? = p— p* = p(1 — p) = 0.48 - 0.52 = 0.2496.
Therefore we want to find /N such that
Var(X 0.2496
ar(Xy) < 0.05.

N(0.02)2  N(0.02)2 —
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Rearranging, we find
1 - 0.05(0.02)? N 0.2496
N = 0.2496 ~ 0.05(0.02)2

So N should be at least 12480 for the probability to be less than 5%.
(2) By LOTUS,

Ee™ =e'P(X; = 1)+ "P(X; =0) = ep+ (1 — p).
Therefore we want N such that
26—0.02\/NE€X1 — 26_0'02\/N(€p + (1 — p)) < 0.05.

This rearranges to become

0.05 0.05
e002VN < — —0.02V'N <lo ( )
2(ep+ (1—p)) S\ 2(ep+ (1-p))

1 0.05
= YNz gl (2(6p+ (1 —p))>

e (_ﬁl()g(2<epf?15—p>>>)2‘

N > 46017
The bound from part (1) produces the smaller V.

= 12480.

Plugging in p = 0.48 yields
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