
Math 154: Probability Theory, HW 4

DUE FEB 13, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. TIME TO GET TO COMPUTATIONS

1.1. Laplace transform of an exponential random variable. Let X ∼ Exp(λ) (for
λ > 0).
(1) Show that EeξX = λ

λ−ξ
for all 0 ⩽ ξ < λ, so that EeξX if and only if ξ < λ (you don’t

need to prove this last claim).
(2) Compute EXk for k = 0, 1, 2, 3, 4.
(3) Show that for any ξ ∈ R, we have EeiξX = λ

λ−iξ
for all ξ ∈ R.

(1) This part is a direct application of LOTUS:

EeξX =
w ∞

0
eξx · λe−λx dx

= λ
w ∞

0
eξx−λx dx

= λ
w ∞

0
e−(−ξ+λ)x dx

= λ

[
e−(−ξ+λ)x

−(−ξ + λ)

]∞
0

= λ

[
0 +

1

−ξ + λ

]
=

λ

λ− ξ
.

(2) For 0 ⩽ ξ < λ we have EeξX = λ
λ−ξ

by part (1). We can then directly differentiate:

EX0 = E1 = 1,

EX =
d

dξ

λ

λ− ξ
|ξ=0 =

λ

(λ− ξ)2
|ξ=0 = λ−1,

EX2 =
d

dξ

λ

(λ− ξ)2
|ξ=0 =

2λ

(λ− ξ)3
|ξ=0 = 2λ−2,

EX3 =
d

dξ

2λ

(λ− ξ)3
|ξ=0 =

6λ

(λ− ξ)4
|ξ=0 = 6λ−3,

EX4 =
d

dξ

6λ

(λ− ξ)4
|ξ=0 =

24λ

(λ− ξ)5
|ξ=0 = 24λ−4.
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Here’s a slicker way to do it. By Taylor expansion, we have

EeξX =
λ

−ξ + λ

=
1

1−
(
ξ
λ

)
=

∞∑
k=0

(
ξ

λ

)k

=
∞∑
k=0

k!

λk
· ξ

k

k!
,

which directly implies that

EXk =
dk

dξk

∞∑
j=0

ξj

λj
=

j!

λj

We compute the moments as follows

EX0 = 1,EX1 =
1

λ
,EX2 =

2

λ2
,EX3 =

6

λ3
,EX4 =

24

λ4
.

(3) A similar proof to part a suffices here (although we should be cautious about complex
numbers, they iron out well):

EeiξX =
w ∞

0
eiξx · λe−λx dx

= λ
w ∞

0
eiξx−λx dx

= λ
w ∞

0
e−(−iξ+λ)x dx

= λ

[
e−(−iξ+λ)x

−(−iξ + λ)

]∞
0

= λ

[
0 +

1

−iξ + λ

]
=

λ

λ− iξ
.

Since we have
λ

λ− iξ
=

λ(λ+ iξ)

λ2 + ξ2
=

λ2 + iλξ

λ2 + ξ2
,

note that (
λ2

λ2 + ξ2

)2

+

(
λξ

λ2 + ξ2

)2

=
λ4 + λ2ξ2

(λ2 + ξ2)2
=

λ2

λ2 + ξ2
⩽ 1,

and our second statement is proven.

1.2. Laplace transform of a Poisson random variable. Let X ∼ Pois(λ).
2



(1) Show that EeξX = eλ(e
ξ−1).

(2) Compute EXk for k = 1, 2, 3.
(3) Use part (1) to show that if X ∼ Pois(λ) and Y ∼ Pois(µ), then X+Y ∼ Pois(λ+µ).

(1) Once again, look to LOTUS:

EeξX =
∞∑
k=0

eξk · e−λλ
k

k!

= e−λ

∞∑
k=0

eξk · λ
k

k!

= e−λ

∞∑
k=0

(eξλ)k

k!

= e−λee
ξλ

= eλ(e
ξ−1).

(2) Now, once again, we have an moment generating function. We can compute succes-
sive moments by derivating wrt ξ and simply plugging in ξ = 0:

EX = λeξ · eλ(eξ−1)|ξ=0 = λ

EX2 = λeξ · eλ(eξ−1)(λeξ + 1)|ξ=0 = λ(λ+ 1)

EX3 = λeξ · eλ(eξ−1)(λ2e2ξ + 3λeξ + 1)|ξ=0 = λ(λ2 + 3λ+ 1)

(3) Note that, as EeξX is a moment generating function, the moment generating function
of the sum of two independent random variables is equivalent to the product of their
marginal moment generating functions. In other words,

Eeξ(X+Y ) = EeξX · EeξY = eλ(e
ξ−1) · eµ(eξ−1) = e(λ+µ)(eξ−1),

which is precisely the moment generating function for a Poisson distribution with
parameter λ+ µ. Since moment generating functions uniquely identify distributions,
X + Y ∼ Pois(λ+ µ), as desired

1.3. Cauchy distribution. We say that X ∼ Cauchy if it is a continuous random vari-
able on R with pdf p(x) = 1

π(1+x2)
.

(1) Show that
r
R p(x)dx = 1 using calculus, so that p(x) is actually a pdf. (You can look

up the antiderivative of 1
1+x2 and its properties; this is more just a check for you to

do.)
Solution:
We have:

w ∞

−∞

1

π(1 + x2)dx
=

1

π
tan−1 x

∣∣∣∞
−∞

=
1

π

(π
2
−
(
−π

2

))
= 1.

(2) Show that E|X| = ∞.
Solution:
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By definition, we have

E|X| =
w

R

|x|
π(1 + x2)

dx = 2
w ∞

0

x

π(1 + x2)
dx =

w ∞

1

1

πy
dy =

1

π
log |y||y=∞

y=0 = ∞,

where the third identity holds by u-substitution y = 1 + x2.
(3) Show that for any ξ ∈ R, we have

1

2π

w

R
e−|ξ|e−ixξdξ =

1

π(1 + x2)
.

Conclude that if X ∼ Cauchy, then EeiξX = e−|ξ|. Can you briefly explain briefly
why this formula alone suggests that EX is not well-defined?
Solution:
We have:

w ∞

−∞
e−|ξ|e−ixξdξ =

w 0

−∞
e−(−ξ)−ixξdξ +

w ∞

0
e−ξ−ixξdξ.

Integrating both integrals gives us:
1

1− ix
eξ−ixξ

∣∣∣0
−∞

+
1

−1− ix
e−ξ−ixξ

∣∣∣∞
0
.

Plugging in 0 to the first expression gives us 1
1−ix

. Evaluating the first expression at

−∞ is as follows: 1
1−ix

eξ−ixξ
∣∣∣
−∞

= 1
1−ix

(
eξe−ixξ

) ∣∣∣
−∞

= 1
1−iξ

· eiξ∞

e∞
. Now, from

Euler’s formula, we know that eiξ∞ is always bounded for any ξ because cos and sin
are always bounded, and so the denominator (e∞) will be the dominating term. Thus,
we have that 1

1−ix

(
eξe−ixξ

) ∣∣∣
−∞

= 0, giving us that the first expression is equivalent

to 1
1−ix

. Evaluating the second expression in a similar fashion gives us that

1

−1− ix
e−ξ−ixξ

∣∣∣∞
0

= 0− 1

−1− ix
=

1

1 + ix
.

Thus, we compute that
1

1− ix
+

1

1 + ix
=

1 + ix+ 1− ix

1 + x2
=

2

1 + x2
.

Multiplying in 1
2π

gives us the desired equality.
From Theorem 4.7 (Inversion Theorem), we then have that E[eiξx] = f(ξ), where

f(ξ) = e−|ξ|. Now, recall from Lemma 4.9 that dk

dξk
EeiξX |ξ=0 = ikEXk. Thus, we

have that EX = 1
i
· d
dξ
EeiξX |ξ=0 = 1

i
· d
dξ
e−|ξ||ξ=0. However, e−|ξ| has an undefined

derivative at ξ = 0, which implies that EX isn’t well-defined.

1.4. A concentration inequality. Suppose X1, . . . , XN are i.i.d. random variables (i.e.
they are independent and have the same distribution), and suppose EXi = 0 and EeλXi <
∞ for all λ ∈ R. Let Y = X1+...+XN

N
.

(1) Compute EeλY in terms of the moment generating functions of X1, . . . , XN .
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(2) Show that for any constants λ, c > 0,

P[|Y | ⩾ c] ⩽ e−cλEeλY + e−cλEe−λY = e−cλ

(
N∏
i=1

Ee
λXi
N +

N∏
i=1

Ee
−λXi

N

)
.

(Hint: the LHS is ⩽ P[Y ⩾ c] + P[−Y ⩾ c].)
(3) Using the inequality ex ⩽ 1 + x+ x2ex, show that Ee

λXi
N ⩽ 1 + λ2

N2E[X2
i e

λXi
N ].

(4) We will now choose λ = N−1/2. Using the inequality x2eκx ⩽ e2x+e−2x for any x ∈
R and any |κ| ⩽ 1, show that EX2

i e
λXi
N ⩽ Ee2Xi + Ee−2Xi , and thus Ee

λXi
N ⩽ 1 + C

N
for some constant C.

(5) You can take for granted that the same argument shows Ee−
λXi
N ⩽ 1 + C

N
. Using the

inequality (1 + C
N
)N ⩽ eC , show that P[|Y | ⩾ c] ⩽ 2e−c

√
NeC .

Solution:

(1) For any random variable X, let mX(λ) = EeλX be its moment generating function.
Then,

EeλY = Eeλ
X1+···+Xn

n = Eeλ(
X1
n

+···+Xn
n ) = Eeλ

X1
n · · · eλ

Xn
n .

Since X1, . . . , Xn are i.i.d., then

Eeλ
X1
n · · · eλ

Xn
n =

(
Eeλ

X1
n

)
· · ·
(
Eeλ

Xn
n

)
=
(
Eeλ

X1
n

)n
=

N∏
i=1

Eeλ
Xi
n =

n∏
i=1

mXi
(λ/n).

(2) First, note that

{|Y | ≥ c} = {Y ≥ c} ∪ {Y ≤ −c} = {Y ≥ c} ∪ {−Y ≤ c}.
Also, {Y ≥ c} and {−Y ≤ c} are disjoint events, so their probabilities add, and we
have

P[|Y | ≥ c] = P[Y ≥ c] + P[−Y ≥ c].

Chebyshev’s inequality says that for any random variable X and any increasing func-
tion φ,

P[X ≥ c] ≤ Eφ(X)

φ(c)
.

Taking φ(t) = eλt, which is increasing since we are assuming λ > 0 for this part, we
have

P[Y ≥ c] ≤ EeλY

eλc
= e−cλEeλY .

Similarly,

P[−Y ≥ c] ≤ Eeλ(−Y )

eλc
= e−cλEe−λY .
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Combining this with our result from part (1), we get

P[|Y | ≥ c] = P[Y ≥ c] + P[−Y ≥ c]

≤ e−cλEeλY + e−cλEe−λY

= e−cλ

(
N∏
i=1

Ee
λXi
N +

N∏
i=1

Ee
−λXi

N

)
.

(3) By the given inequality,

e
λXi
n ≤ 1 +

λXi

n
+

(
λXi

n

)2

e
λXi
n .

Thus by linearity of expectation,

Ee
λXi
n ≤ E

(
1 +

λXi

n
+

(
λXi

n

)2

e
λXi
n

)

= 1 +
λ

n
EXi +

λ2

n2
E
[
X2

i e
λXi
n

]
= 1 +

λ2

n2
E
[
X2

i e
λXi
n

]
,

since we’re given EXi = 0.

(4) Take κ = λ
N

= N1/2

N
= 1√

N
, so that X2

i e
λXi
N = X2

i e
Xi√
N = X2

i e
κXi , where we let

κ = 1√
N
. Note that |κ| ≤ 1, so the inequality given in the problem statement applies.

So,
EX2

i e
λXi
N ≤ E(e2Xi + e−2Xi) = Ee2Xi + Ee−2Xi .

Since the RHS is a constant, then we can set C = Ee2Xi + Ee−2Xi . Now, we use the
inequality from the previous part to obtain

Ee
λXi
N ≤ 1 +

λ2

N2
E[X2

i e
λXi
N ]

= 1 +
N

N2
E[X2

i e
λXi
N ]

= 1 +
1

N
E[X2

i e
λXi
N ]

≤ 1 +
1

N
(Ee2Xi + Ee−2Xi)

= 1 +
C

N
.

(5) From part (2),

P[|Y | ≥ c] ≤ e−cλ

(
N∏
i=1

Ee
λXi
N +

N∏
i=1

Ee
−λXi

N

)
.
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From part (4) the inequality that we can take for granted,

Ee
λXi
N ≤ 1 +

C

N
, Ee−

λXi
N ≤ 1 +

C

N
.

Continuing, we have

e−cλ

(
N∏
i=1

Ee
λXi
N +

N∏
i=1

Ee
−λXi

N

)
≤ e−c

√
N

(
N∏
i=1

(
1 +

C

N

)
+

N∏
i=1

(
1 +

C

N

))

= e−c
√
N

(
2

(
1 +

C

N

)N
)
.

Using the given inequality (1 + C
N
)N ≤ eC , we obtain a final upper-bound of

e−c
√
N

(
2

(
1 +

C

N

)N
)

≤ e−c
√
N(2eC).

Therefore
P[|Y | ≥ c] ≤ 2e−c

√
NeC ,

as desired.

1.5. An application of the law of large numbers. Suppose I give you a coin and tell
you that the probability of heads is 0.48. Suppose you want to test if I am right. How
many times N do you have to flip this coin to be at least 95% confident that it is biased
towards heads? To be precise:

(1) Let X1, . . . , XN ∼ Bern(p) with p = 0.48 be independent. Set Y = 1
N

∑N
i=1Xi.

Recall EY = p. Using the bound

P[|Y − p| ⩾ 0.02] ⩽
Var(X1)

N(0.02)2

from class, how large do you have to take N for this probability to be ⩽ 5%?
(2) What if we instead use the following bound (which is what you get when optimizing

in Problem 1.4):

P[|Y − p| ⩾ 0.02] ⩽ 2e−0.02
√
NEeX1 .

Which bound produces the smaller N?

Solution:

(1) First, we find

Var(X1) = E(X2
1 )− (EX1)

2 = p− p2 = p(1− p) = 0.48 · 0.52 = 0.2496.

Therefore we want to find N such that
Var(X1)

N(0.02)2
=

0.2496

N(0.02)2
≤ 0.05.
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Rearranging, we find
1

N
≤ 0.05(0.02)2

0.2496
=⇒ N ≥ 0.2496

0.05(0.02)2
= 12480.

So N should be at least 12480 for the probability to be less than 5%.
(2) By LOTUS,

EeX1 = e1P(X1 = 1) + e0P(X1 = 0) = ep+ (1− p).

Therefore we want N such that

2e−0.02
√
NEeX1 = 2e−0.02

√
N(ep+ (1− p)) ≤ 0.05.

This rearranges to become

e−0.02
√
N ≤ 0.05

2(ep+ (1− p))
=⇒ −0.02

√
N ≤ log

(
0.05

2(ep+ (1− p))

)
=⇒

√
N ≥ − 1

0.02
log

(
0.05

2(ep+ (1− p))

)
=⇒ N ≥

(
− 1

0.02
log

(
0.05

2(ep+ (1− p))

))2

.

Plugging in p = 0.48 yields
N ≥ 46017

The bound from part (1) produces the smaller N.

8


	Due Feb 13, 2024 by 9am
	1. Time to get to computations
	1.1. Laplace transform of an exponential random variable
	1.2. Laplace transform of a Poisson random variable
	1.3. Cauchy distribution
	1.4. A concentration inequality
	1.5. An application of the law of large numbers


