Math 154: Probability Theory, HW 4

Due Feb 20, 2024 by 9Am
Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Time to get to computations

1.1. Laplace transform of an exponential random variable. Let $X \sim \operatorname{Exp}(\lambda)$ (for $\lambda>0$).
(1) Show that $\mathbb{E} e^{\xi X}=\frac{\lambda}{\lambda-\xi}$ for all $0 \leqslant \xi<\lambda$, so that $\mathbb{E} e^{\xi X}<\infty$ if and only if $\xi<\lambda$ (you don't need to prove this last claim).
(2) Compute $\mathbb{E} X^{k}$ for $k=0,1,2,3,4$.
(3) Show that for any $\xi \in \mathbb{R}$, we have $\mathbb{E} e^{i \xi X}=\frac{\lambda}{\lambda-i \xi}$ for all $\xi \in \mathbb{R}$.
1.2. Laplace transform of a Poisson random variable. Let $X \sim \operatorname{Pois}(\lambda)$.
(1) Show that $\mathbb{E} e^{\xi X}=e^{\lambda\left(e^{\xi}-1\right)}$.
(2) Compute $\mathbb{E} X^{k}$ for $k=1,2,3$.
(3) Use part (1) to show that if $X \sim \operatorname{Pois}(\lambda)$ and $Y \sim \operatorname{Pois}(\mu)$ are independent, then $X+Y \sim \operatorname{Pois}(\lambda+\mu)$.
1.3. Cauchy distribution. We say that $X \sim$ Cauchy if it is a continuous random variable on \mathbb{R} with pdf $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
(1) Show that $\int_{\mathbb{R}} p(x) d x=1$ using calculus, so that $p(x)$ is actually a pdf. (You can look up the antiderivative of $\frac{1}{1+x^{2}}$ and its properties; this is more just a check for you to do.)
(2) Show that $\mathbb{E}|X|=\infty$.
(3) Show that for any $\xi \in \mathbb{R}$, we have

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-|\xi|} e^{-i x \xi} d \xi=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Conclude that if $X \sim$ Cauchy, then $\mathbb{E} e^{i \xi X}=e^{-|\xi|}$. Can you briefly explain briefly why this formula alone suggests that $\mathbb{E} X$ is not well-defined?
1.4. A concentration inequality. Suppose X_{1}, \ldots, X_{N} are i.i.d. random variables (i.e. they are independent and have the same distribution), and suppose $\mathbb{E} X_{i}=0$ and $\mathbb{E} e^{\lambda X_{i}}<$ ∞ for all $\lambda \in \mathbb{R}$. Let $Y=\frac{X_{1}+\ldots+X_{N}}{N}$.
(1) Compute $\mathbb{E} e^{\lambda Y}$ in terms of the moment generating functions of X_{1}, \ldots, X_{N}.
(2) Show that for any constants $\lambda, c>0$,

$$
\mathbb{P}[|Y| \geqslant c] \leqslant e^{-c \lambda} \mathbb{E} e^{\lambda Y}+e^{-c \lambda} \mathbb{E} e^{-\lambda Y}=e^{-c \lambda}\left(\prod_{i=1}^{N} \mathbb{E} e^{\frac{\lambda X_{i}}{N}}+\prod_{i=1}^{N} \mathbb{E} e^{\frac{-\lambda X_{i}}{N}}\right)
$$

(Hint: the LHS is $\leqslant \mathbb{P}[Y \geqslant c]+\mathbb{P}[-Y \geqslant c]$.)
(3) Using the inequality $e^{x} \leqslant 1+x+x^{2} e^{x}$, show that $\mathbb{E} e^{\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{\lambda^{2}}{N^{2}} \mathbb{E}\left[X_{i}^{2} e^{\frac{\lambda X_{i}}{N}}\right]$.
(4) We will now choose $\lambda=N^{1 / 2}$. Using the inequality $x^{2} e^{\kappa x} \leqslant e^{2 x}+e^{-2 x}$ for any $x \in \mathbb{R}$ and any $|\kappa| \leqslant 1$, show that $\mathbb{E} X_{i}^{2} e^{\frac{\lambda X_{i}}{N}} \leqslant \mathbb{E} e^{2 X_{i}}+\mathbb{E} e^{-2 X_{i}}$, and thus $\mathbb{E} e^{\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{C}{N}$ for some constant C.
(5) You can take for granted that the same argument shows $\mathbb{E} e^{-\frac{\lambda X_{i}}{N}} \leqslant 1+\frac{C}{N}$. Using the inequality $\left(1+\frac{C}{N}\right)^{N} \leqslant e^{C}$, show that $\mathbb{P}[|Y| \geqslant c] \leqslant 2 e^{-c \sqrt{N}} e^{C}$.
1.5. An application of the law of large numbers. Suppose I give you a coin and tell you that the probability of heads is 0.48 . Suppose you want to test if I am right. How many times N do you have to flip this coin to be at least 95% confident that it is biased towards heads? To be precise:
(1) Let $X_{1}, \ldots, X_{N} \sim \operatorname{Bern}(p)$ with $p=0.48$ be independent. Set $Y=\frac{1}{N} \sum_{i=1}^{N} X_{i}$. Recall $\mathbb{E} Y=p$. Using the bound

$$
\mathbb{P}[|Y-p| \geqslant 0.02] \leqslant \frac{\operatorname{Var}\left(X_{1}\right)}{N(0.02)^{2}}
$$

from class, how large do you have to take N for this probability to be $\leqslant 5 \%$?
(2) What if we instead use the following bound (which is what you get when optimizing in Problem 1.4):

$$
\mathbb{P}[|Y-p| \geqslant 0.02] \leqslant 2 e^{-0.02 \sqrt{N}} \mathbb{E} e^{X_{1}}
$$

Which bound produces the smaller N ?

