Math 154: Probability Theory, HW 3

Due Feb 3, 2024 by 9am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. All of these problems require at least a little thought

1.1. Some magic in the Gaussian. Suppose $X \sim N(0,1)$.
(1) Show that

$$
x e^{-\frac{x^{2}}{2}}=-\frac{d}{d x} e^{-\frac{x^{2}}{2}}
$$

(2) Take any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$. Show that

$$
\mathbb{E} X f(X)=\mathbb{E} f^{\prime}(X)
$$

provided that both sides converge absolutely (when written as integrals). This is often known as Gaussian integration by parts. (Hint: the hint is in the name.)
(3) Show that for any integer $k \geqslant 0$, we have $\mathbb{E} X^{2 k+1}=0$.
(4) Show that for any integer $k \geqslant 0$, we have $\mathbb{E} X^{2 k}=(2 k-1)!$!, where $(2 k-1)!$! := $(2 k-1)(2 k-3) \ldots 1$. (Hint: use part (2) with $f(X)=X^{2 k-1}$, and induct on k.)
1.2. Another fact about the Gaussian distribution. Let $X \sim N\left(0, \sigma^{2}\right)$ for some $\sigma>0$. Take any $\lambda \in \mathbb{R}$. Show that

$$
\mathbb{E} e^{\lambda X}=e^{\frac{\lambda^{2} \sigma^{2}}{2}}
$$

(Hint: you may want to use the completing-the-square formula $a^{2}-2 b a=(a-b)^{2}-b^{2}$ after you write out what the expectation on the LHS is as an integral on \mathbb{R}.) Give another proof of $\mathbb{E} X=0$ and $\mathbb{E} X^{2}=\sigma^{2}$ by differentiating both sides of this identity (once and twice) and setting $\lambda=0$.
1.3. How does one sample from a distribution? Suppose X is a continuous random variable, so that $\mathbb{P}(X \leqslant x)=\int_{-\infty}^{x} p(u) d u$. Suppose p is smooth and $p(u)>0$ for all $u \in \mathbb{R}$.
(1) Show that the distribution of the random variable

$$
F(X)=\int_{-\infty}^{X} p(u) d u
$$

is the uniform distribution on $[0,1]$. (Here, we evaluate the top limit of the integral at the random variable X. Hint: it is not important to know what its inverse exactly is.)
(2) Show that the random variable $-\log F(X)$ has p.d.f given by e^{-x}.
1.4. What? Suppose X is an exponential random variable (i.e. it has the exponential distribution). Show that $\mathbb{P}(X>s+x \mid X>s)=\mathbb{P}(X>x)$ for any $x, s \geqslant 0$.
1.5. To the right or to the left? Let X have variance σ^{2}, and write $m_{k}=\mathbb{E} X^{k}$. Define the skewness of (the distribution of) X to be $\operatorname{skw}(X)=\frac{\mathbb{E}\left(X-m_{1}\right)^{3}}{\sigma^{3}}$. (This measures how much to the left/right the graph of the pdf is.)
(1) Show that $\operatorname{skw}(X)=\frac{m_{3}-3 m_{1} m_{2}+2 m_{1}^{3}}{\sigma^{3}}$
(2) Let X_{1}, \ldots, X_{n} be i.i.d. copies of X (i.e. they are independent and have the same distribution). Set $S_{n}=X_{1}+\ldots+X_{n}$. Using the following, show $\operatorname{skw}\left(S_{n}\right)=\frac{\operatorname{skw}\left(X_{1}\right)}{\sqrt{n}}$. - Compute $\operatorname{Var}\left(S_{n}\right)$ in terms of $\operatorname{Var}\left(X_{1}\right)$ using the i.i.d. property of X_{1}, \ldots, X_{n}.

- Show that $\mathbb{E} S_{n}=n \mathbb{E} X_{1}$.
- Letting $m=\mathbb{E} X_{1}$, show that $\mathbb{E}\left(S_{n}-\mathbb{E} S_{n}\right)^{3}=\sum_{i, j, k=1}^{n} \mathbb{E}\left[\left(X_{i}-m\right)\left(X_{j}-m\right)\left(X_{k}-\right.\right.$ $m)$].
- Using independence, i.e. that $\mathbb{E}\left[\prod_{i=1}^{n} f_{i}\left(W_{i}\right)\right]=\prod_{i=1}^{n} \mathbb{E}\left[f_{i}\left(W_{i}\right)\right]$ for any functions f_{1}, \ldots, f_{n} and any independent random variables W_{1}, \ldots, W_{n}, show that $\mathbb{E}\left[\left(X_{i}-\right.\right.$ $\left.m)\left(X_{j}-m\right)\left(X_{k}-m\right)\right]=0$ unless i, j, k are all the same. (Note that for any random variable $Y, \mathbb{E}(Y-\mathbb{E}(Y))=0$.)
- Deduce that $\mathbb{E}\left(S_{n}-\mathbb{E} S_{n}\right)^{3}=n \mathbb{E}\left(X_{1}-\mathbb{E} X_{1}\right)^{3}$.
- Now compute $\operatorname{skw}\left(S_{n}\right)=\frac{\mathbb{E}\left(S_{n}-\mathbb{E} S_{n}\right)^{3}}{\operatorname{Var}\left(S_{n}\right)^{3 / 2}}$ in terms of $\operatorname{skw}\left(X_{1}\right)$.
(3) Suppose $X \sim \operatorname{Bern}(p)$. Show that $\operatorname{skw}(X)=\frac{1-2 p}{\sqrt{p(1-p)}}$ by direct computation.
(4) Suppose $X \sim \operatorname{Bin}(n, p)$. Show that $\operatorname{skw}(X)=\frac{1-2 p}{\sqrt{n p(1-p)}}$, so that it vanishes as $N \rightarrow \infty$. (In particular, this shows that averaging a bunch of random variables can reduce skewness.)
1.6. Some more computations. Keep the notation in the setting of Problem 1.5. Define the kurtosis of X by $\operatorname{kur}(X)=\frac{\mathbb{E}\left(X-m_{1}\right)^{4}}{\sigma^{4}}$. (This is kind of like a variance, but it tells you a little more about the shape of the graph of the pdf.)
(1) Show that if $X \sim N\left(\mu, \sigma^{2}\right)$, then $\operatorname{kur}(X)=3$. Notice how this is much simpler! (It does not depend on the parameters of the distribution.)
(2) Let X_{1}, X_{2} be i.i.d. $N(0,1)$. Define $S=X_{1}+X_{2}$. Without using the fact that $X_{1}+X_{2} \sim N(0,2)$, show that $\operatorname{kur}(S)=3$. (In particular, use $\operatorname{kur}(S)=\frac{\mathbb{E}(S-\mathbb{E} S)^{4}}{\operatorname{Var}(S)^{2}}$.)

