
Math 154: Probability Theory, HW 2

DUE FEB 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. SOME PRACTICE

1.1. Poisson and binomial distributions show up everywhere. Let X and Y be inde-
pendent Poisson random variables with parameters λ and µ, respectively.

(1) By computing the pmf of X +Y , show that X +Y is a Poisson random variable with
parameter λ+ µ

(2) By computing P(X = k|X+Y = n), show that P(X = k|X+Y = n) = p(k), where
p(k) is the pmf for a Binomial distribution (with parameters that you must compute).

Solution:
(1) Consider the sum X + Y .

P(X + Y = k) =
k∑

i=0

P(X + Y = k|X = i)P(X = i)

=
k∑

i=0

P(Y = k − i)P(X = i)

=
k∑

i=0

e−µ µk−i

(k − i)!
· e−λλ

i

i!

=
e−µ−λ

k!

k∑
i=0

µk−i

(k − i)!
· λ

i

i!

=
e−µ−λ

k!

k∑
i=0

µk−i

(k − i)!
· λ

i

i!

=
e−µ−λ

k!

k∑
i=0

(
k

i

)
· λiµk−i

=
(µ+ λ)ke−µ−λ

k!
which is precisely the Poisson PMF with param λ+ µ.
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(2)

P(X = k|X + Y = n) =
P(X + Y = n|X = k)P(X = k)

P(X + Y = n)

=
P(Y = n− k)P(X = k)

P(X + Y = n)

=
e−µ µn−k

(n−k)!
· e−λ λk

k!

(µ+λ)ne−µ−λ

n!

=
n!

k!(n− k)!
·
(

µ

µ+ λ

)n−k (
λ

µ+ λ

)k

,

which is the binomial pmf with parameters n and λ
µ+λ

.

1.2. What? Suppose X is a geometric random variable. Show that P(X = n + k|X >
n) = P(X = k) for any integers k, n ⩾ 1. (This is called the “memorylessness” property.)
Solution: By the definition of conditional probability, we have that, for n, k ⩾ 1,

P(X = n+ k|X > k) =
P(X = n+ k,X > n)

P(X > k)
=

P(X = n+ k)

P(X > n)

=
(1− p)n+k∑∞
ℓ=n+1(1− p)ℓ

=
(1− p)n+k

(1− p)n+1p−1
= (1− p)k−1p,

and memorylessness is proven.

1.3. For some reason, probabilists like urns. An urn contains N balls, b of which are
blue and r = N − b of which are red. Let us randomly take n of the N balls (without
replacement). If R is the number of red balls drawn, explain briefly why

P(R = k) =

(
r
k

)(
N−r
n−k

)(
N
n

) .

This is the hypergeometric distribution. Now, take the limit b,N, r → ∞ and suppose
r
N

→ p (and thus b
N

→ 1− p). (In words, keep a constant fraction of blue and red balls.)
Compute the limit of P(R = k) as N → ∞, i.e. confirm that

P(R = k) →
(
n

k

)
pk(1− p)n−k. (1.1)

(This is saying that in the limit of infinitely many balls, sampling with and without re-
placement is the same, as long as the number of samples n and the proportion of colors

is fixed.) (Hint: it may help to use (Xy )
1
y!
Xy → 1 as X → ∞ and y is fixed, i.e. not large.)

Solution:
(1) P(R = k) can be determined by taking the total number of possible combinations

of k red balls and n − k blue balls and dividing it by the total number of possible
combinations. There are a total of

(
r
k

)
possible combinations of red balls that can be
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chosen and
(
N−r
n−k

)
possible combinations of blue balls that can be chosen. The total

number of combinations is
(
N
n

)
, giving us the desired equality.

(2) First, we prove the hint. Expanding
(
X
y

)
gives us:(

X

y

)
=

X!

(X − y)! · y!
=

1

y!
· X!

(X − y)!
=

1

y!
·X · (X − 1) · ... · (X − y + 1).

Now, as X grows larger, any constant subtracted from X will just be X , giving us
that as X approaches ∞,

(
X
y

)
= 1

y!
·Xy.

Now, using this hint, we begin by adjusting our original equality for P(R = k).
Because r approaches ∞, we have that

(
r
k

)
= 1

k!
· rk. Applying the same logic to the

rest of the equality gives us that

P(R = k) =

1
k!
rk · 1

(n−k)!
· (N − r)n−k

1
n!
Nn

.

Now,
(
n
k

)
= n!

k!(n−k)!
, so we can simplify to have

P(R = k) =

(
n

k

)
· r

k · (N − r)n−k

Nn
.

Now, given that p = r
N
, we then have that

P(R = k) =

(
n

k

)
· pk ·

(
N − r

N

)n−k

=

(
n

k

)
· pk · (1− p)n−k

2. SOME LEMMAS (AND ANOTHER URN)

2.1. The “layer-cake formula” (and an application).

(1) Suppose X is a discrete random variable that takes values in the non-negative integers.
Show that E(X) =

∑∞
n=0 P(X > n).

(2) An urn contains b blue and r red balls. Balls are removed from the urn at random
one-by-one. Compute the expected number of turns that we must take until the first
red balls is drawn. (You should get b+r+1

r+1
, but show your work.)

Solution:
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(1) Note that (smoothing over some of the formalities), we can say

E[X] =
∞∑
x=0

x∑
k=0

P(X = x)

=
∞∑
x=0

∞∑
k=0

I(x > k)P(X = x)

=
∞∑
k=0

∞∑
x=0

I(x > k)P(X = x)

=
∞∑
k=0

P(X > k)

(2) Enumerate the b blue balls with indexes 1 through b, defining an indicator Ii equal to
1 if blue ball i is drawn before any red ball. Thus, we have

X − 1 =
b∑

i=1

Ii

For any given blue ball i, considering it alongside all the r red balls, the probability
that the blue ball happens before all the reds is 1

r+1
(since each ordering of r+1 balls

is equally likely). Thus,

E[X]− 1 =
b∑

i=1

E[Ii] ⇒ E[X] = 1 + b · 1

r + 1
=

b+ r + 1

r + 1
.

KY: In terms of using the layer cake formula, what is happening here is that P[X >
i] = 1

r+1
for all i = 1, . . . , b and 0 for i > b. So E[X] = P[X > 0] + b

r+1
, but

P[X > 0] = 1, so E[X] = 1 + b
r+1

= b+r+1
r

.

2.2. Maximum disorder. Let X1, . . . , Xn be independent Bernoulli random variables
with parameters p1, . . . , pn ∈ [0, 1], respectively. Define Y = X1 + . . . Xn.

(1) Show that E(Y ) =
∑n

k=1 pk and Var(Y ) =
∑n

k=1 pk(1− pk).
(2) Suppose we fix the value of E(Y ) (to be, say, E). Show that the choice of p1, . . . , pn

which maximizes Var(Y ) satisfies p1 = . . . = pn. (This part has nothing random in
it. You can do it by Lagrange multipliers or by plugging in pn = E−(p1+ . . .+pn−1)
into the variance formula and maximizing over n−1 variables without any constraints
by using calculus.)

Solution:
(1) Using linearity of expectation, we have that

E[Y ] = E[X1] + E[X2] + ...+ E[Xn] = p1 + p2 + ...+ pn.

Because X1, ..., Xn are independent variables, we have that

Var(Y ) = Var(X1) + Var(X2) + ...+Var(Xn) = p1(1− p1) + ...+ pn(1− pn).
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(2) Suppose E[Y ] =
∑n

k=1 pk = E. Then pn = E −
∑n−1

k=1 pk. This means the variance
is equal to

n−1∑
k=1

pk(1− pk) +

(
E −

n−1∑
j=1

pj

)[
1− E +

n−1∑
j=1

pj

]
.

Let’s take the pk derivative. We get

1− 2pk − 1 + 2E − 2
n−1∑
j=1

pj.

We want all of these to be 0, which means that

pk = E −
n−1∑
j=1

pj

for all k = 1, . . . , n− 1. But this is the value of pn too, so we are done. (Technically,
one has to check that the maximum of Var(Y ) cannot occur on the boundary, i.e.
when pk = 0 or pk = 1 for some k. But in this case, the variance is 0, whereas clearly
the variance does not have to be 0 if the expectation is fixed, unless E = n or E = 0,
but this is case is trivial. But, maybe this isn’t necessary for grading purposes.)

2.3. An old friend, the covariance matrix. Let X1, . . . , Xn be (possibly dependent)
random variables. Define the matrix Cov(X) as an n×n matrix with entries Cov(X)ij =
Cov(Xi, Xj). Let X = (X1, . . . , Xn) be the vector with entries X1, . . . , Xn.

(1) Show that for any v = (v1, . . . , vn), we have vCov(X)vT = Var(v ·X) ⩾ 0.
(2) Show that Cov(X) is invertible if and only if the following is satisfied:

• If v ·X is a constant random variables, then v is the zero vector.
(Hint: what condition on the null-space is equivalent to a square matrix being invert-
ible?)

Solution:
(1) By bilinearity of the covariance,

Var(v·X) = Var

(
n∑

i=1

viXi

)
= Cov

(
n∑

i=1

viXi,
n∑

j=1

vjXj

)
=

n∑
i=1

n∑
j=1

vivjCov(Xi, Xj).

Also, the ith entry in Cov(X)vT is
n∑

j=1

vjCov(Xi, Xj),

so

vCov(X)vT =
n∑

i=1

vi

n∑
j=1

vjCov(Xi, Xj) =
n∑

i=1

n∑
j=1

vivjCov(Xi, Xj).

Hence vCov(X)vT = Var(v ·X) ≥ 0, because the variance is always nonnegative.
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(2) First assume that Cov(X) is invertible, and let v = (v1, . . . , vn) be a vector such that
v ·X = c is a constant. Then, for any i, by linearity of expectation,

Cov(Xi,v ·X) = Cov(Xi, c) = E(Xic)− E(Xi)E(c) = cE(Xi)− cE(Xi) = 0.

Therefore by bilinearity of the covariance,

0 = Cov(Xi,v ·X) = Cov

(
Xi,

n∑
j=1

vjXj

)
=

n∑
j=1

vjCov(Xi, Xj).

But this is precisely the ith entry in the column vector Cov(X)vT , so we deduce that
Cov(X)vT is the zero vector. However, Cov(X) was assumed to be invertible, so it
must be the case that vT is the zero vector. Hence v is the zero vector.
Conversely, assume that if v is a vector satisfying v ·X = c for some constant c, then
it is the zero vector (•). To show that Cov(X) is invertible, it is equivalent to show
that if Cov(X)vT is the zero vector, then vT is the zero vector. So, let vT be a vector
such that every entry in Cov(X)vT is 0. From earlier, we know that the ith entry in
Cov(X)vT is

n∑
j=1

vjCov(Xi, Xj).

But, this can be rearranged:
n∑

j=1

vjCov(Xi, Xj) = Cov

(
Xi,

n∑
j=1

vjXj

)
= Cov(Xi,v ·X).

Therefore Cov(Xi,v ·X) = 0 for all i. It follows that

Var(v ·X) = Var

(
n∑

i=1

viXi

)

= Cov

(
n∑

i=1

viXi,
n∑

j=1

vjXj

)

= Cov

(
n∑

i=1

viXi,v ·X

)

=
n∑

i=1

viCov(Xi,v ·X)

=
n∑

i=1

vi · 0

= 0.

So, v ·X is a constant. By (•), we get that v is the zero vector. Thus vT is the zero
vector, and so we’ve shown that Cov(X) is invertible.
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