Math 154: Probability Theory, HW 2

DUE FEB 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice

1.1. Poisson and binomial distributions show up everywhere. Let X and Y be independent Poisson random variables with parameters λ and μ , respectively.

- (1) By computing the pmf of X + Y, show that X + Y is a Poisson random variable with parameter $\lambda + \mu$
- (2) By computing $\mathbb{P}(X = k | X + Y = n)$, show that $\mathbb{P}(X = k | X + Y = n) = p(k)$, where p(k) is the pmf for a Binomial distribution (with parameters that you must compute).

Solution:

(1) Consider the sum X + Y.

$$\begin{split} \mathbb{P}(X+Y=k) &= \sum_{i=0}^{k} \mathbb{P}(X+Y=k|X=i) \mathbb{P}(X=i) \\ &= \sum_{i=0}^{k} \mathbb{P}(Y=k-i) \mathbb{P}(X=i) \\ &= \sum_{i=0}^{k} e^{-\mu} \frac{\mu^{k-i}}{(k-i)!} \cdot e^{-\lambda} \frac{\lambda^{i}}{i!} \\ &= \frac{e^{-\mu-\lambda}}{k!} \sum_{i=0}^{k} \frac{\mu^{k-i}}{(k-i)!} \cdot \frac{\lambda^{i}}{i!} \\ &= \frac{e^{-\mu-\lambda}}{k!} \sum_{i=0}^{k} \frac{\mu^{k-i}}{(k-i)!} \cdot \frac{\lambda^{i}}{i!} \\ &= \frac{e^{-\mu-\lambda}}{k!} \sum_{i=0}^{k} \binom{k}{i} \cdot \lambda^{i} \mu^{k-i} \\ &= \frac{(\mu+\lambda)^{k} e^{-\mu-\lambda}}{k!} \end{split}$$

which is precisely the Poisson PMF with param $\lambda + \mu$.

$$\mathbb{P}(X = k | X + Y = n) = \frac{\mathbb{P}(X + Y = n | X = k) \mathbb{P}(X = k)}{\mathbb{P}(X + Y = n)}$$
$$= \frac{\mathbb{P}(Y = n - k) \mathbb{P}(X = k)}{\mathbb{P}(X + Y = n)}$$
$$= \frac{e^{-\mu} \frac{\mu^{n-k}}{(n-k)!} \cdot e^{-\lambda} \frac{\lambda^k}{k!}}{\frac{(\mu+\lambda)^n e^{-\mu-\lambda}}{n!}}$$
$$= \frac{n!}{k!(n-k)!} \cdot \left(\frac{\mu}{\mu+\lambda}\right)^{n-k} \left(\frac{\lambda}{\mu+\lambda}\right)^k$$

which is the binomial pmf with parameters n and $\frac{\lambda}{\mu+\lambda}$.

1.2. What? Suppose X is a geometric random variable. Show that $\mathbb{P}(X = n + k | X > n) = \mathbb{P}(X = k)$ for any integers $k, n \ge 1$. (This is called the "memorylessness" property.) Solution: By the definition of conditional probability, we have that, for $n, k \ge 1$,

$$\mathbb{P}(X = n + k | X > k) = \frac{\mathbb{P}(X = n + k, X > n)}{\mathbb{P}(X > k)} = \frac{\mathbb{P}(X = n + k)}{\mathbb{P}(X > n)}$$
$$= \frac{(1 - p)^{n + k}}{\sum_{\ell = n+1}^{\infty} (1 - p)^{\ell}} = \frac{(1 - p)^{n + k}}{(1 - p)^{n + 1}p^{-1}} = (1 - p)^{k - 1}p,$$

and memorylessness is proven.

1.3. For some reason, probabilists like urns. An urn contains N balls, b of which are blue and r = N - b of which are red. Let us randomly take n of the N balls (without replacement). If R is the number of red balls drawn, explain briefly why

$$\mathbb{P}(R=k) = \frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}}.$$

This is the hypergeometric distribution. Now, take the limit $b, N, r \to \infty$ and suppose $\frac{r}{N} \to p$ (and thus $\frac{b}{N} \to 1 - p$). (In words, keep a constant fraction of blue and red balls.) Compute the limit of $\mathbb{P}(R = k)$ as $N \to \infty$, i.e. confirm that

$$\mathbb{P}(R=k) \to {\binom{n}{k}} p^k (1-p)^{n-k}.$$
(1.1)

(This is saying that in the limit of infinitely many balls, sampling with and without replacement is the same, as long as the number of samples n and the proportion of colors is fixed.) (*Hint*: it may help to use $\frac{\binom{X}{y}}{\frac{1}{y!}X^y} \to 1$ as $X \to \infty$ and y is fixed, i.e. not large.) Solution:

(1) $\mathbb{P}(R = k)$ can be determined by taking the total number of possible combinations of k red balls and n - k blue balls and dividing it by the total number of possible combinations. There are a total of $\binom{r}{k}$ possible combinations of red balls that can be

chosen and $\binom{N-r}{n-k}$ possible combinations of blue balls that can be chosen. The total number of combinations is $\binom{N}{n}$, giving us the desired equality.

(2) First, we prove the hint. Expanding $\binom{X}{y}$ gives us:

$$\binom{X}{y} = \frac{X!}{(X-y)! \cdot y!} = \frac{1}{y!} \cdot \frac{X!}{(X-y)!} = \frac{1}{y!} \cdot X \cdot (X-1) \cdot \dots \cdot (X-y+1).$$

Now, as X grows larger, any constant subtracted from X will just be X, giving us

that as X approaches ∞ , $\binom{X}{y} = \frac{1}{y!} \cdot X^y$. Now, using this hint, we begin by adjusting our original equality for $\mathbb{P}(R = k)$. Because r approaches ∞ , we have that $\binom{r}{k} = \frac{1}{k!} \cdot r^k$. Applying the same logic to the rest of the equality gives us that

$$\mathbb{P}(R=k) = \frac{\frac{1}{k!}r^k \cdot \frac{1}{(n-k)!} \cdot (N-r)^{n-k}}{\frac{1}{n!}N^n}.$$

Now, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, so we can simplify to have

$$\mathbb{P}(R=k) = \binom{n}{k} \cdot \frac{r^k \cdot (N-r)^{n-k}}{N^n}.$$

Now, given that $p = \frac{r}{N}$, we then have that

$$\mathbb{P}(R=k) = \binom{n}{k} \cdot p^k \cdot \left(\frac{N-r}{N}\right)^{n-k} = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

2. Some Lemmas (and another urn)

2.1. The "layer-cake formula" (and an application).

- (1) Suppose X is a discrete random variable that takes values in the non-negative integers. Show that $\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n)$.
- (2) An urn contains b blue and r red balls. Balls are removed from the urn at random one-by-one. Compute the expected number of turns that we must take until the first red balls is drawn. (You should get $\frac{b+r+1}{r+1}$, but show your work.)

Solution:

(1) Note that (smoothing over some of the formalities), we can say

$$\mathbb{E}[X] = \sum_{x=0}^{\infty} \sum_{k=0}^{x} \mathbb{P}(X = x)$$
$$= \sum_{x=0}^{\infty} \sum_{k=0}^{\infty} I(x > k) \mathbb{P}(X = x)$$
$$= \sum_{k=0}^{\infty} \sum_{x=0}^{\infty} I(x > k) \mathbb{P}(X = x)$$
$$= \sum_{k=0}^{\infty} \mathbb{P}(X > k)$$

(2) Enumerate the b blue balls with indexes 1 through b, defining an indicator I_i equal to 1 if blue ball *i* is drawn before any red ball. Thus, we have

$$X - 1 = \sum_{i=1}^{b} I_i$$

For any given blue ball i, considering it alongside all the r red balls, the probability that the blue ball happens before all the reds is $\frac{1}{r+1}$ (since each ordering of r+1 balls is equally likely). Thus,

$$\mathbb{E}[X] - 1 = \sum_{i=1}^{b} \mathbb{E}[I_i] \Rightarrow \mathbb{E}[X] = 1 + b \cdot \frac{1}{r+1} = \frac{b+r+1}{r+1}.$$

KY: In terms of using the layer cake formula, what is happening here is that $\mathbb{P}[X > i] = \frac{1}{r+1}$ for all i = 1, ..., b and 0 for i > b. So $\mathbb{E}[X] = \mathbb{P}[X > 0] + \frac{b}{r+1}$, but $\mathbb{P}[X > 0] = 1$, so $\mathbb{E}[X] = 1 + \frac{b}{r+1} = \frac{b+r+1}{r}$.

2.2. Maximum disorder. Let X_1, \ldots, X_n be independent Bernoulli random variables with parameters $p_1, \ldots, p_n \in [0, 1]$, respectively. Define $Y = X_1 + \ldots + X_n$.

- (1) Show that E(Y) = ∑_{k=1}ⁿ p_k and Var(Y) = ∑_{k=1}ⁿ p_k(1 − p_k).
 (2) Suppose we fix the value of E(Y) (to be, say, E). Show that the choice of p₁,..., p_n which maximizes Var(Y) satisfies $p_1 = \ldots = p_n$. (This part has nothing random in it. You can do it by Lagrange multipliers or by plugging in $p_n = E - (p_1 + \ldots + p_{n-1})$ into the variance formula and maximizing over n-1 variables without any constraints by using calculus.)

Solution:

(1) Using linearity of expectation, we have that

$$\mathbb{E}[Y] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n] = p_1 + p_2 + \dots + p_n.$$

Because $X_1, ..., X_n$ are independent variables, we have that

$$Var(Y) = Var(X_1) + Var(X_2) + \dots + Var(X_n) = p_1(1 - p_1) + \dots + p_n(1 - p_n).$$

(2) Suppose $\mathbb{E}[Y] = \sum_{k=1}^{n} p_k = E$. Then $p_n = E - \sum_{k=1}^{n-1} p_k$. This means the variance is equal to

$$\sum_{k=1}^{n-1} p_k (1-p_k) + \left(E - \sum_{j=1}^{n-1} p_j\right) \left[1 - E + \sum_{j=1}^{n-1} p_j\right].$$

Let's take the p_k derivative. We get

$$1 - 2p_k - 1 + 2E - 2\sum_{j=1}^{n-1} p_j.$$

We want all of these to be 0, which means that

$$p_k = E - \sum_{j=1}^{n-1} p_j$$

for all k = 1, ..., n - 1. But this is the value of p_n too, so we are done. (Technically, one has to check that the maximum of Var(Y) cannot occur on the boundary, i.e. when $p_k = 0$ or $p_k = 1$ for some k. But in this case, the variance is 0, whereas clearly the variance does not have to be 0 if the expectation is fixed, unless E = n or E = 0, but this is case is trivial. But, maybe this isn't necessary for grading purposes.)

2.3. An old friend, the covariance matrix. Let X_1, \ldots, X_n be (possibly dependent) random variables. Define the matrix $Cov(\mathbf{X})$ as an $n \times n$ matrix with entries $Cov(\mathbf{X})_{ij} = Cov(X_i, X_j)$. Let $\mathbf{X} = (X_1, \ldots, X_n)$ be the vector with entries X_1, \ldots, X_n .

(1) Show that for any $\mathbf{v} = (v_1, \ldots, v_n)$, we have $\mathbf{v} \operatorname{Cov}(\mathbf{X}) \mathbf{v}^T = \operatorname{Var}(\mathbf{v} \cdot \mathbf{X}) \ge 0$.

(2) Show that Cov(X) is invertible if and only if the following is satisfied:
If v · X is a constant random variables, then v is the zero vector.
(*Hint*: what condition on the null-space is equivalent to a square matrix being invertible?)

Solution:

(1) By bilinearity of the covariance,

$$\operatorname{Var}(\mathbf{v}\cdot\mathbf{X}) = \operatorname{Var}\left(\sum_{i=1}^{n} v_i X_i\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} v_i X_i, \sum_{j=1}^{n} v_j X_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} v_i v_j \operatorname{Cov}(X_i, X_j).$$

Also, the *i*th entry in $Cov(\mathbf{X})\mathbf{v}^T$ is

$$\sum_{j=1}^{n} v_j \operatorname{Cov}(X_i, X_j),$$

SO

$$\mathbf{v}\mathrm{Cov}(\mathbf{X})\mathbf{v}^{T} = \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} v_{j}\mathrm{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} v_{i}v_{j}\mathrm{Cov}(X_{i}, X_{j}).$$

Hence $\mathbf{v} \operatorname{Cov}(\mathbf{X}) \mathbf{v}^T = \operatorname{Var}(\mathbf{v} \cdot \mathbf{X}) \ge 0$, because the variance is always nonnegative.

(2) First assume that $Cov(\mathbf{X})$ is invertible, and let $\mathbf{v} = (v_1, \dots, v_n)$ be a vector such that $\mathbf{v} \cdot \mathbf{X} = c$ is a constant. Then, for any *i*, by linearity of expectation,

$$\operatorname{Cov}(X_i, \mathbf{v} \cdot \mathbf{X}) = \operatorname{Cov}(X_i, c) = \mathbb{E}(X_i c) - \mathbb{E}(X_i) \mathbb{E}(c) = c \mathbb{E}(X_i) - c \mathbb{E}(X_i) = 0.$$

Therefore by bilinearity of the covariance,

$$0 = \operatorname{Cov}(X_i, \mathbf{v} \cdot \mathbf{X}) = \operatorname{Cov}\left(X_i, \sum_{j=1}^n v_j X_j\right) = \sum_{j=1}^n v_j \operatorname{Cov}(X_i, X_j).$$

But this is precisely the *i*th entry in the column vector $Cov(\mathbf{X})\mathbf{v}^T$, so we deduce that $Cov(\mathbf{X})\mathbf{v}^T$ is the zero vector. However, $Cov(\mathbf{X})$ was assumed to be invertible, so it must be the case that \mathbf{v}^T is the zero vector. Hence \mathbf{v} is the zero vector.

Conversely, assume that if \mathbf{v} is a vector satisfying $\mathbf{v} \cdot \mathbf{X} = c$ for some constant c, then it is the zero vector (•). To show that $\operatorname{Cov}(\mathbf{X})$ is invertible, it is equivalent to show that if $\operatorname{Cov}(\mathbf{X})\mathbf{v}^T$ is the zero vector, then \mathbf{v}^T is the zero vector. So, let \mathbf{v}^T be a vector such that every entry in $\operatorname{Cov}(\mathbf{X})\mathbf{v}^T$ is 0. From earlier, we know that the *i*th entry in $\operatorname{Cov}(\mathbf{X})\mathbf{v}^T$ is

$$\sum_{j=1}^{n} v_j \operatorname{Cov}(X_i, X_j).$$

But, this can be rearranged:

$$\sum_{j=1}^{n} v_j \operatorname{Cov}(X_i, X_j) = \operatorname{Cov}\left(X_i, \sum_{j=1}^{n} v_j X_j\right) = \operatorname{Cov}(X_i, \mathbf{v} \cdot \mathbf{X}).$$

Therefore $Cov(X_i, \mathbf{v} \cdot \mathbf{X}) = 0$ for all *i*. It follows that

$$\operatorname{Var}(\mathbf{v} \cdot \mathbf{X}) = \operatorname{Var}\left(\sum_{i=1}^{n} v_i X_i\right)$$
$$= \operatorname{Cov}\left(\sum_{i=1}^{n} v_i X_i, \sum_{j=1}^{n} v_j X_j\right)$$
$$= \operatorname{Cov}\left(\sum_{i=1}^{n} v_i X_i, \mathbf{v} \cdot \mathbf{X}\right)$$
$$= \sum_{i=1}^{n} v_i \operatorname{Cov}(X_i, \mathbf{v} \cdot \mathbf{X})$$
$$= \sum_{i=1}^{n} v_i \cdot 0$$
$$= 0.$$

So, $\mathbf{v} \cdot \mathbf{X}$ is a constant. By (•), we get that \mathbf{v} is the zero vector. Thus \mathbf{v}^T is the zero vector, and so we've shown that $Cov(\mathbf{X})$ is invertible.