Math 154: Probability Theory, HW 2

Due Feb 6, 2024 by 9Am

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice

1.1. Poisson and binomial distributions show up everywhere. Let X and Y be independent Poisson random variables with parameters λ and μ, respectively.
(1) By computing the pmf of $X+Y$, show that $X+Y$ is a Poisson random variable with parameter $\lambda+\mu$
(2) By computing $\mathbb{P}(X=k \mid X+Y=n)$, show that $\mathbb{P}(X=k \mid X+Y=n)=p(k)$, where $p(k)$ is the pmf for a Binomial distribution (with parameters that you must compute).
1.2. What? Suppose X is a geometric random variable. Show that $\mathbb{P}(X=n+k \mid X>$ $n)=\mathbb{P}(X=k)$ for any integers $k, n \geqslant 1$. (This is called the "memorylessness" property.)
1.3. For some reason, probabilists like urns. An urn contains N balls, b of which are blue and $r=N-b$ of which are red. Let us randomly take n of the N balls (without replacement). If R is the number of red balls drawn, explain briefly why

$$
\mathbb{P}(R=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}} .
$$

This is the hypergeometric distribution. Now, take the limit $b, N, r \rightarrow \infty$ and suppose $\frac{r}{N} \rightarrow p$ (and thus $\frac{b}{N} \rightarrow 1-p$). (In words, keep a constant fraction of blue and red balls.) Compute the limit of $\mathbb{P}(R=k)$ as $N \rightarrow \infty$, i.e. confirm that

$$
\begin{equation*}
\mathbb{P}(R=k) \rightarrow\binom{n}{k} p^{k}(1-p)^{n-k} \tag{1.1}
\end{equation*}
$$

(This is saying that in the limit of infinitely many balls, sampling with and without replacement is the same, as long as the number of samples n and the proportion of colors is fixed.) (Hint: it may help to use $\frac{\binom{X}{y}}{\frac{1}{y!} X^{y}} \rightarrow 1$ as $X \rightarrow \infty$ and y is fixed, i.e. not large.)

2. Some lemmas (AND ANOTHER URN)

2.1. The "layer-cake formula" (and an application).

(1) Suppose X is a discrete random variable that takes values in the non-negative integers. Show that $\mathbb{E}(X)=\sum_{n=0}^{\infty} \mathbb{P}(X>n)$.
(2) An urn contains b blue and r red balls. Balls are removed from the urn at random one-by-one. Compute the expected number of turns that we must take until the first red balls is drawn. (You should get $\frac{b+r+1}{r+1}$, but show your work.)
2.2. Maximum disorder. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with parameters $p_{1}, \ldots, p_{n} \in[0,1]$, respectively. Define $Y=X_{1}+\ldots X_{n}$.
(1) Show that $\mathbb{E}(Y)=\sum_{k=1}^{n} p_{k}$ and $\operatorname{Var}(Y)=\sum_{k=1}^{n} p_{k}\left(1-p_{k}\right)$.
(2) Suppose we fix the value of $\mathbb{E}(Y)$ (to be, say, E). Show that the choice of p_{1}, \ldots, p_{n} which maximizes $\operatorname{Var}(Y)$ satisfies $p_{1}=\ldots=p_{n}$. (This part has nothing random in it. You can do it by Lagrange multipliers or by plugging in $p_{n}=E-\left(p_{1}+\ldots+p_{n-1}\right)$ into the variance formula and maximizing over $n-1$ variables without any constraints by using calculus.)
2.3. An old friend, the covariance matrix. Let X_{1}, \ldots, X_{n} be (possibly dependent) random variables. Define the matrix $\operatorname{Cov}(\mathbf{X})$ as an $n \times n$ matrix with entries $\operatorname{Cov}(\mathbf{X})_{i j}=$ $\operatorname{Cov}\left(X_{i}, X_{j}\right)$. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be the vector with entries X_{1}, \ldots, X_{n}.
(1) Show that for any $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$, we have $\mathbf{v} \operatorname{Cov}(\mathbf{X}) \mathbf{v}^{T}=\operatorname{Var}(\mathbf{v} \cdot \mathbf{X}) \geqslant 0$.
(2) Show that $\operatorname{Cov}(\mathbf{X})$ is invertible if and only if the following is satisfied:

- If $\mathbf{v} \cdot \mathbf{X}$ is a constant random variables, then \mathbf{v} is the zero vector.
(Hint: what condition on the null-space is equivalent to a square matrix being invertible?)

