Math 154: Probability Theory, HW 3

DUE FEB 3, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. ALL OF THESE PROBLEMS REQUIRE AT LEAST A LITTLE THOUGHT

1.1. Some magic in the Gaussian. Suppose X ~ N(0,1).
(1) Show that

——e
dx
(2) Take any smooth function f : R — R. Show that
EXf(X) =Ef(X),
provided that both sides converge absolutely (when written as integrals). This is often
known as Gaussian integration by parts. (Hint: the hint is in the name.)
(3) Show that for any integer k& > 0, we have EX2¥+1 = (.
(4) Show that for any integer k¥ > 0, we have EX?* = (2k — 1)!!, where (2k — 1)!! :=
(2k — 1)(2k — 3) ... 1. (Hint: use part (2) with f(X) = X! and induct on k.)
Solution:

(1) By the chain rule and power rule of calculus, we have

d 2 d 2 2 d 2? 2 2

2) With the assumptions given in the problem statement, using our result from the first
P g P g
part, we have that

Ef'(X) Ve ™2 dx

-l
=g L@ ([ e P ay) e [ ([T e ay)

— \/12? IO (IO f/<"L'> dJ) . (_yefyz/?) dy + \/12? JOOO (LU f/(»L> dJ) y€7y2/2 dy

Nor: f [f(y) = F(O)] - ye ™ dy
™

where the third inequality is given by Fubini’s theorem with iterative integration.
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(3) We proceed by induction. For £ = 0, EX = 0 is given. Suppose truth for & — 1; let’s
prove the statement for k: Let f(X) = X?F. By part b, we have that

]Ex2k+1 QkEXZk 1
By our inductive step, EX2(F=D+1 = EX?*~1 — (, implying that
EX2k+l _ O
and we are done.

(4) We proceed by induction. For £ = 0, E1 = 1 is given. Suppose truth for £ — 1; let’s
prove the statement for k: Let f(X) = X?~!. By part b, we have that

EX?F = (2k EX?2
our inductive step, implying that
By d p, EX2(—1) — (2k — 3)!1, implying th
EX% (2k — ),

and we are done.

1.2. Another fact about the Gaussian distribution. Let X ~ N (0, 0%) for some o > 0.
Take any A € R. Show that

Ee X = eAQTJQ.
(Hint: you may want to use the completing-the-square formula a? — 2ba = (a — b)* — b?
after you write out what the expectation on the LHS is as an integral on R.) Give another
proof of EX = 0 and EX? = o? by differentiating both sides of this identity (once and
twice) and setting A = 0.
Solution:
By LOTUS, we have

+00 1 —+oc0 7(.1,—/\02)2 ,\2 2 /\2::2
EeM = J e zgz+)‘ld J e 22 e 2 dr=e2 ,
V2mo? V2mo?2 J—oo

(z=2o?)?

where the last step follows because \/2;76_ 202 is the pdf of N(\o?, 0?), so its inte-

gral is 1. Differentiating the expression with respect to A once and plugging in A = 0, we
have
) 2252

EXM = A2 7 S EX =0
Differentiating a second time before plugglng in A = 0, we get

4)\(72

EX2eM = 02€ 5 +)\206 2 ::>OEX2:02

1.3. How does one sample from a dlstrlbution? Suppose X is a continuous random
variable, so that P(X < z) = [*_p(u)du. Suppose p is smooth and p(u) > 0 for all
u e R.

(1) Show that the distribution of the random variable

F(X) = I_XOO p(u)du
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is the uniform distribution on [0, 1]. (Here, we evaluate the top limit of the integral at
the random variable X . Hint: it is not important to know what its inverse exactly is.)
Solution:

Let Y = F(X). Then, to calculate the CDF of Y, we have that F(Y) = P(Y <
y) = P(F(X) < y). Knowing that X is smooth and increasing thus gives us that
this is equal to P(X < F~'(y)) = F(F~'(y)) = y, which is the CDF of a uniform
distribution on [0, 1].

(2) Show that the random variable — log F'(X) has p.d.f given by e~".

Solution:

Let Y = —logF(X). Then, to calculate the CDF of Y, we have that F'(Y') = P(Y <
y) = P(—logF(X) < y). Knowing that X is smooth and increasing thus gives us that
thisisequalto P(X > F~1(e7¥)) = 1-F(F(e¥)) = 1—e Y. To get the PDF of Y,

we take the derivative of Y with respect to y, giving us that p(y) = (1—e™¥)L = ¢7¥.

dy

1.4. What? Suppose X is an exponential random variable (i.e. it has the exponential
distribution). Show that P(X > s + z|X > s) = P(X > x) forany z,s > 0.

Solution:

Using definition of conditional probability, we have that

PX>s+xz(1X >s5) PX>s+uz)

P(X >s+z|X >s)=

P(X > s)  P(X >5)
Then, we have that this is equal to:
1-P(X<s+ax) et
1—P(X <s) e

Now, P(X >x)=1-P(X <) =1-(1—-e?) = ¢ thus proving the claim.

1.5. To the right or to the left? Let X have variance o2, and write m;, = EX?*. Define
the skewness of (the distribution of) X to be skw(X) = E(X;—Sml)g. (This measures how

much to the left/right the graph of the pdf is.)
(1) Show that skw(X) = mg—3myma+2m}

o3

(2) Let X;q,..., X, be iid. copies of X (i.e. they are independent and have the same

distribution). Set S,, = X;+. ..+ X,,. Using the following, show skw(S,,) = %

e Compute Var(S,) in terms of Var(X7) using the i.i.d. property of X, ..., X,.

e Show that ES, = nlEXj;.

e Lettingm = EX|, show that E(S, —ES,)* = >77", | E[(X;—m)(X; —m)(X —
m)].

e Using independence, i.e. that E[[[;_, f;(W;)] = [].—, E[f:(W;)] for any functions
fi,-.., f[n and any independent random variables W7, ..., W,,, show that E[(X; —
m)(X;—m)(Xy—m)] = 0 unless 7, j, k are all the same. (Note that for any random
variable Y, E(Y —E(Y)) =0.)

e Deduce that E(S,, — ES,)? = nE(X; — EX;)3.

_ E(S,—ES,)3

e Now compute skw(S,,) = ~Narge/e in terms of skw(Xy).
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(3) Suppose X ~ Bern(p). Show that skw(X) = % by direct computation.
p{i—p
(4) Suppose X ~ Bin(n,p). Show that skw(X) = %, so that it vanishes as
np(l—=p

N — oo. (In particular, this shows that averaging a bunch of random variables can
reduce skewness.)

Solution:

(1) By the Binomial Theorem and linearity of expectation, we have
E(X —my)® = E(X? - 3X?m; +3Xm] —m?)
=EX® - 3mEX? + 3miEX — m?
= msg — 3myms + Smfml - m‘;)
= ms3 — 3mims + Qmi{’,
SO . .
skow (X)) = E(X —3m1) _mg— 3m12nz + 2m1.
o o
(2) e Since X3, ..., X, are independent, then
Var(S,) = Var(X; +---+ X,,) = Var(X;) + - - - + Var(X,,).

But X7, ..., X, are also identically distributed, so the RHS simplifies to nVar(X).
Thus Var(S,,) = nVar(X;).
e By linearity,

ES, =E(X;+ -+ X,) =EX; +--- + EX,,.

Again, X4, ..., X, are identically distributed, so the RHS simplifies to n[EX;. Thus
e Using ES,, = nEX; from the previous part, we have

E(S, — ]ESn)3 =EX;+---+ X, — nEXl)B
=E((X; —EXy) + - + (X, — EXy))?
:E((Xl—m)++(Xn_m))3

—E ( S (X = m) (X, = m) (X, - m>)

i k=1

=3 E[(X = m)(X; —m)(Xe —m),

i k=1

where the last step follows from linearity of expectation.
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e Suppose that i, j, k are not all the same. Then WLOG suppose i« # k and j # k.
Then, X}, is independent of X; and X, so

E[(X; —m)(X; —m)(Xy —m)] = E[(X; —m)(X; —m)[E[Xy —m]
E[(X; — m)(X; — m)|E[X; — EX)]
0,

because for any random variable Y, E(Y —E(Y')) = 0.
e By the previous part,

E(S, — ES,)* = Z E[(X; — m)(X; — m)(Xy — m)]

n

— Z E[(X; — m)(X; — m)(X), —m)]

= "E[(X; — m)(X; —m)(X; — m)]

i=1
= Z E[(X; —m)].
Since Xy,..., X, are identi;lily distributed, then the sum simplifies down as
Zn:E[(XZ- —m)?] = nE(X;, —m)® = nE(X, — EX})%
i=1

e From the earlier parts, we found
E(S, — ES,)?* = nE(X; — EX))?, Var(S,) = nVar(X;).
So,
E(S, —ES,)?
Var(S,,)3/2
~ nE(X; —-EX;)?
~ (nVar(X,))3/?
_E(X, —EXy)?
~ /nVar(X;)3/2
_EX —EXy)?
Vil
E(X, -EX;)3
Vno?
_ skw(Xy)
= —\/ﬁ .

skw(S,) =




(3) By LOTUS, we find
EX=0-(1-p)+1-p=p
EX?=0"-(1-p)+12-p=p
EX?=0-(1-p)+1°-p=p.
Thus m; = my = m3 = p and
0= VEX? — (EX??=p—p?=p(l —p
By the first part of this problem,
ms — 3mymsy + 2mS3 D 3p* + 2p* p(l—p)(1—-2p)  1-2p
’ (1 —p) T p(l—pVp(l=p) Vp-p)

skw(X) =

o

as desired.
(4) Represent
X=X1+-X,
where X1, ..., X, arei.i.d. Bern(p). It follows by the last part of (2) that

skw (X
sdew(X) = X,
Vn
But we found the skewness of a Bern(p) random variable in the previous part, so
1-2p
skw(X7) p(1-p) 1 —2p

Vi Ve mlop)

as desired.

1.6. Some more computations. Keep the notation in the setting of Problem 1.5. Define

the kurtosis of X by kur(X) = M (This is kind of like a variance, but it tells you
a little more about the shape of the graph of the pdf.)

(1) Show that if X ~ N(u,c?), then kur(X) = 3. Notice how this is much simpler! (It
does not depend on the parameters of the distribution.)

(2) Let X, X5 be ii.d. N(0,1). Define S = X; + X,. Without using the fact that

X1 + Xy ~ N(0,2), show that kur(S) = 3. (In particular, use kur(S) = ]Ei}:(]gff )

Solution:
As in problem 1.5, denote my, = EX*.

(1) Note that X —m; = X — p ~ N(0,0%), so we can write X — m; = oZ where

Z ~ N(0,1). It follows that

E(X — 1 E(o2)? TEZ
kur(X) — ;M): wﬁ — =2 _gzt
o o o
From the first problem, we computed the moments of the standard Normal distribu-
tion. In particular, have EZ* = 3!! = 3, so
kur(X) = 3.
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(2) To find kur(.S), we use the formula
E(S — ES)?
Var(S)?
For the numerator, note that ES = 0, so by the Binomial theorem, linearity of expec-
tation, and the independence of X and X5,

E(S — ES)* =ES*
=E(X; + X,)*
= E(X] +4X7 X, + 6X2X5 +4X, X3 + XJ)
= EX] +4E(X} X5) + 6B(X7X3) +4E(X, X3) + EX,
= EX} +4EX?EX, + 6EXEX; + 4EX | EXS + EX;.
X; and X5 are identically distributed, so the expression becomes
EX}+4EXPEX, +6EXJEX] +4EX,EX; + EX} = 2EX| +8EX;EX, +6EXTEX?.
Since X; ~ N(0, 1), then from the first problem,
EX, =0, EXi=1 EX;=0, EX/=3
Thus the expression evaluates to
2:3+8:-0+6-1=12.
The denominator is, by independence of X; and X5,
Var(S)? = (Var(X;) + Var(X;))? = (1 +1)* = 4.

kur(S) =

Therefore E(S ES)4 9
k :_—:—:
R e S

as desired.
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