
Math 154: Probability Theory, HW 3

DUE FEB 3, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class,
and see if anything looks familiar.

1. ALL OF THESE PROBLEMS REQUIRE AT LEAST A LITTLE THOUGHT

1.1. Some magic in the Gaussian. Suppose X ∼ N(0, 1).
(1) Show that

xe−
x2

2 = − d

dx
e−

x2

2

(2) Take any smooth function f : R → R. Show that

EXf(X) = Ef ′(X),

provided that both sides converge absolutely (when written as integrals). This is often
known as Gaussian integration by parts. (Hint: the hint is in the name.)

(3) Show that for any integer k ⩾ 0, we have EX2k+1 = 0.
(4) Show that for any integer k ⩾ 0, we have EX2k = (2k − 1)!!, where (2k − 1)!! :=

(2k − 1)(2k − 3) . . . 1. (Hint: use part (2) with f(X) = X2k−1, and induct on k.)
Solution:

(1) By the chain rule and power rule of calculus, we have

− d

dx
e−

x2

2 = −
(

d

dx
e−

x2

2

)
= −

(
e−

x2

2
d

dx
−x2

2

)
= −

(
e−

x2

2 · (−x)
)
= xe−

x2

2

(2) With the assumptions given in the problem statement, using our result from the first
part, we have that

Ef ′(X) =
1√
2π

w ∞

−∞
f ′(x)e−x2/2 dx

=
1√
2π

w 0

−∞
f ′(x)

(w x

−∞
−ye−y2/2 dy

)
dx+

1√
2π

w ∞

0
f ′(x)

(w ∞

x
ye−y2/2 dy

)
dx

=
1√
2π

w 0

−∞

(w 0

y
f ′(x) dx

)
· (−ye−y2/2) dy +

1√
2π

w ∞

0

(w y

0
f ′(x) dx

)
ye−y2/2 dy

=
1√
2π

w ∞

−∞
[f(y)− f(0)] · ye−y2/2 dy

= EXf(X),

where the third inequality is given by Fubini’s theorem with iterative integration.
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(3) We proceed by induction. For k = 0, EX = 0 is given. Suppose truth for k − 1; let’s
prove the statement for k: Let f(X) = X2k. By part b, we have that

EX2k+1 = 2kEX2k−1

By our inductive step, EX2(k−1)+1 = EX2k−1 = 0, implying that

EX2k+1 = 0,

and we are done.
(4) We proceed by induction. For k = 0, E1 = 1 is given. Suppose truth for k − 1; let’s

prove the statement for k: Let f(X) = X2k−1. By part b, we have that

EX2k = (2k − 1)EX2k−2

By our inductive step, EX2(k−1) = (2k − 3)!!, implying that

EX2k = (2k − 1)!!,

and we are done.

1.2. Another fact about the Gaussian distribution. Let X ∼ N(0, σ2) for some σ > 0.
Take any λ ∈ R. Show that

EeλX = e
λ2σ2

2 .

(Hint: you may want to use the completing-the-square formula a2 − 2ba = (a− b)2 − b2

after you write out what the expectation on the LHS is as an integral on R.) Give another
proof of EX = 0 and EX2 = σ2 by differentiating both sides of this identity (once and
twice) and setting λ = 0.
Solution:
By LOTUS, we have

EeλX =
1√
2πσ2

w +∞

−∞
e−

x2

2σ2+λxdx =
1√
2πσ2

w +∞

−∞
e−

(x−λσ2)2

2σ2 e
λ2σ2

2 dx = e
λ2x2

2 ,

where the last step follows because 1√
2πσ2

e−
(x−λσ2)2

2σ2 is the pdf of N(λσ2, σ2), so its inte-
gral is 1. Differentiating the expression with respect to λ once and plugging in λ = 0, we
have

EXeλX = λσ2e
λ2σ2

2
λ=0⇒ EX = 0

Differentiating a second time before plugging in λ = 0, we get

EX2eλX = σ2e
λ2σ2

2 + λ2σ4e
λ2σ2

2
λ=0⇒ EX2 = σ2

1.3. How does one sample from a distribution? Suppose X is a continuous random
variable, so that P(X ⩽ x) =

r x

−∞ p(u)du. Suppose p is smooth and p(u) > 0 for all
u ∈ R.
(1) Show that the distribution of the random variable

F (X) =
w X

−∞
p(u)du
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is the uniform distribution on [0, 1]. (Here, we evaluate the top limit of the integral at
the random variable X . Hint: it is not important to know what its inverse exactly is.)
Solution:
Let Y = F (X). Then, to calculate the CDF of Y, we have that F (Y ) = P (Y ⩽
y) = P (F (X) ⩽ y). Knowing that X is smooth and increasing thus gives us that
this is equal to P (X ⩽ F−1(y)) = F (F−1(y)) = y, which is the CDF of a uniform
distribution on [0, 1].

(2) Show that the random variable − logF (X) has p.d.f given by e−x.
Solution:
Let Y = −logF (X). Then, to calculate the CDF of Y, we have that F (Y ) = P (Y ⩽
y) = P (−logF (X) ⩽ y). Knowing that X is smooth and increasing thus gives us that
this is equal to P (X ⩾ F−1(e−y)) = 1−F (F−1(e−y)) = 1−e−y. To get the PDF of Y,
we take the derivative of Y with respect to y, giving us that p(y) = (1−e−y) d

dy
= e−y.

1.4. What? Suppose X is an exponential random variable (i.e. it has the exponential
distribution). Show that P(X > s+ x|X > s) = P(X > x) for any x, s ⩾ 0.
Solution:
Using definition of conditional probability, we have that

P (X > s+ x|X > s) =
P (X > s+ x

⋂
X > s)

P (X > s)
=

P (X > s+ x)

P (X > s)
.

Then, we have that this is equal to:

1− P (X ⩽ s+ x)

1− P (X ⩽ s)
=

e−λ(s+x)

e−λs
= e−λx.

Now, P (X > x) = 1− P (X ⩽ x) = 1− (1− e−λx) = e−λx, thus proving the claim.

1.5. To the right or to the left? Let X have variance σ2, and write mk = EXk. Define
the skewness of (the distribution of) X to be skw(X) = E(X−m1)3

σ3 . (This measures how
much to the left/right the graph of the pdf is.)

(1) Show that skw(X) =
m3−3m1m2+2m3

1

σ3

(2) Let X1, . . . , Xn be i.i.d. copies of X (i.e. they are independent and have the same
distribution). Set Sn = X1+ . . .+Xn. Using the following, show skw(Sn) =

skw(X1)√
n

.
• Compute Var(Sn) in terms of Var(X1) using the i.i.d. property of X1, . . . , Xn.
• Show that ESn = nEX1.
• Letting m = EX1, show that E(Sn−ESn)

3 =
∑n

i,j,k=1 E[(Xi−m)(Xj−m)(Xk−
m)].

• Using independence, i.e. that E[
∏n

i=1 fi(Wi)] =
∏n

i=1 E[fi(Wi)] for any functions
f1, . . . , fn and any independent random variables W1, . . . ,Wn, show that E[(Xi −
m)(Xj−m)(Xk−m)] = 0 unless i, j, k are all the same. (Note that for any random
variable Y , E(Y − E(Y )) = 0.)

• Deduce that E(Sn − ESn)
3 = nE(X1 − EX1)

3.
• Now compute skw(Sn) =

E(Sn−ESn)3

Var(Sn)3/2
in terms of skw(X1).
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(3) Suppose X ∼ Bern(p). Show that skw(X) = 1−2p√
p(1−p)

by direct computation.

(4) Suppose X ∼ Bin(n, p). Show that skw(X) = 1−2p√
np(1−p)

, so that it vanishes as

N → ∞. (In particular, this shows that averaging a bunch of random variables can
reduce skewness.)

Solution:

(1) By the Binomial Theorem and linearity of expectation, we have

E(X −m1)
3 = E(X3 − 3X2m1 + 3Xm3

1 −m3
1)

= EX3 − 3m1EX2 + 3m2
1EX −m3

1

= m3 − 3m1m2 + 3m2
1m1 −m3

1

= m3 − 3m1m2 + 2m3
1,

so

skw(X) =
E(X −m1)

3

σ3
=

m3 − 3m1m2 + 2m3
1

σ3
.

(2) • Since X1, . . . , Xn are independent, then

Var(Sn) = Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn).

But X1, . . . , Xn are also identically distributed, so the RHS simplifies to nVar(X1).
Thus Var(Sn) = nVar(X1).

• By linearity,

ESn = E(X1 + · · ·+Xn) = EX1 + · · ·+ EXn.

Again, X1, . . . , Xn are identically distributed, so the RHS simplifies to nEX1. Thus
ESn = nEX1.

• Using ESn = nEX1 from the previous part, we have

E(Sn − ESn)
3 = E(X1 + · · ·+Xn − nEX1)

3

= E((X1 − EX1) + · · ·+ (Xn − EX1))
3

= E((X1 −m) + · · ·+ (Xn −m))3

= E

(
n∑

i,j,k=1

(Xi −m)(Xj −m)(Xk −m)

)

=
n∑

i,j,k=1

E[(Xi −m)(Xj −m)(Xk −m)],

where the last step follows from linearity of expectation.
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• Suppose that i, j, k are not all the same. Then WLOG suppose i ̸= k and j ̸= k.
Then, Xk is independent of Xi and Xj, so

E[(Xi −m)(Xj −m)(Xk −m)] = E[(Xi −m)(Xj −m)]E[Xk −m]

= E[(Xi −m)(Xj −m)]E[Xk − EXk]

= 0,

because for any random variable Y, E(Y − E(Y )) = 0.
• By the previous part,

E(Sn − ESn)
3 =

n∑
i,j,k=1

E[(Xi −m)(Xj −m)(Xk −m)]

=
n∑

i,j,k=1
i=j=k

E[(Xi −m)(Xj −m)(Xk −m)]

=
n∑

i=1

E[(Xi −m)(Xi −m)(Xi −m)]

=
n∑

i=1

E[(Xi −m)3].

Since X1, . . . , Xn are identically distributed, then the sum simplifies down as
n∑

i=1

E[(Xi −m)3] = nE(X1 −m)3 = nE(X1 − EX1)
3.

• From the earlier parts, we found

E(Sn − ESn)
3 = nE(X1 − EX1)

3, Var(Sn) = nVar(X1).

So,

skw(Sn) =
E(Sn − ESn)

3

Var(Sn)3/2

=
nE(X1 − EX1)

3

(nVar(X1))3/2

=
E(X1 − EX1)

3

√
nVar(X1)3/2

=
E(X1 − EX1)

3

√
n(σ2)3/2

=
E(X1 − EX1)

3

√
nσ3

=
skw(X1)√

n
.
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(3) By LOTUS, we find

EX = 0 · (1− p) + 1 · p = p

EX2 = 02 · (1− p) + 12 · p = p

EX3 = 03 · (1− p) + 13 · p = p.

Thus m1 = m2 = m3 = p and

σ =
√

EX2 − (EX)2 =
√
p− p2 =

√
p(1− p).

By the first part of this problem,

skw(X) =
m3 − 3m1m2 + 2m3

1

σ3
=

p− 3p2 + 2p3√
p(1− p)

3 =
p(1− p)(1− 2p)

p(1− p)
√
p(1− p)

=
1− 2p√
p(1− p)

,

as desired.
(4) Represent

X = X1 + · · ·Xn

where X1, . . . , Xn are i.i.d. Bern(p). It follows by the last part of (2) that

skw(X) =
skw(X1)√

n
.

But we found the skewness of a Bern(p) random variable in the previous part, so

skw(X1)√
n

=

1−2p√
p(1−p)√
n

=
1− 2p√
np(1− p)

,

as desired.

1.6. Some more computations. Keep the notation in the setting of Problem 1.5. Define
the kurtosis of X by kur(X) = E(X−m1)4

σ4 . (This is kind of like a variance, but it tells you
a little more about the shape of the graph of the pdf.)

(1) Show that if X ∼ N(µ, σ2), then kur(X) = 3. Notice how this is much simpler! (It
does not depend on the parameters of the distribution.)

(2) Let X1, X2 be i.i.d. N(0, 1). Define S = X1 + X2. Without using the fact that
X1 +X2 ∼ N(0, 2), show that kur(S) = 3. (In particular, use kur(S) = E(S−ES)4

Var(S)2
.)

Solution:
As in problem 1.5, denote mk = EXk.

(1) Note that X − m1 = X − µ ∼ N(0, σ2), so we can write X − m1 = σZ where
Z ∼ N(0, 1). It follows that

kur(X) =
E(X −m1)

4

σ4
=

E(σZ)4

σ4
=

σ4EZ4

σ4
= EZ4.

From the first problem, we computed the moments of the standard Normal distribu-
tion. In particular, have EZ4 = 3!! = 3, so

kur(X) = 3.
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(2) To find kur(S), we use the formula

kur(S) =
E(S − ES)4

Var(S)2
.

For the numerator, note that ES = 0, so by the Binomial theorem, linearity of expec-
tation, and the independence of X1 and X2,

E(S − ES)4 = ES4

= E(X1 +X2)
4

= E(X4
1 + 4X3

1X2 + 6X2
1X

2
2 + 4X1X

3
2 +X4

2 )

= EX4
1 + 4E(X3

1X2) + 6E(X2
1X

2
2 ) + 4E(X1X

3
2 ) + EX4

2

= EX4
1 + 4EX3

1EX2 + 6EX2
1EX2

2 + 4EX1EX3
2 + EX4

2 .

X1 and X2 are identically distributed, so the expression becomes

EX4
1 +4EX3

1EX1+6EX2
1EX2

1 +4EX1EX3
1 +EX4

1 = 2EX4
1 +8EX3

1EX1+6EX2
1EX2

1 .

Since X1 ∼ N(0, 1), then from the first problem,

EX1 = 0, EX2
1 = 1, EX3

1 = 0, EX4
1 = 3.

Thus the expression evaluates to

2 · 3 + 8 · 0 + 6 · 1 = 12.

The denominator is, by independence of X1 and X2,

Var(S)2 = (Var(X1) + Var(X2))
2 = (1 + 1)2 = 4.

Therefore

kur(S) =
E(S − ES)4

Var(S)2
=

12

4
= 3,

as desired.

7


	Due Feb 3, 2024 by 9am
	1. All of these problems require at least a little thought
	1.1. Some magic in the Gaussian
	1.2. Another fact about the Gaussian distribution
	1.3. How does one sample from a distribution?
	1.4. What?
	1.5. To the right or to the left?
	1.6. Some more computations


