Math 154: Probability Theory, HW 9

Due April 16, 2024 by 9Am
Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Getting our hands on Brownian motion

1.1. A computation. Consider the integral $\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.
(1) Compute $\mathbb{E} \int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.
(2) Compute $\mathbb{E}\left|\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s\right|^{2}$. (Hint: as in class, square the integral to get a double integral over $0 \leqslant r \leqslant s \leqslant t$. For $r \leqslant s$, it may then help to write $\mathbf{B}_{s}^{2} \mathbf{B}_{r}^{2}=\left(\mathbf{B}_{s}-\mathbf{B}_{r}+\right.$ $\left.\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}=\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}+2\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right) \mathbf{B}_{r}^{3}+\mathbf{B}_{r}^{4}$. Now use independence of increments and knowledge of the distribution of increments.)
(3) Deduce the variance of $\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.

Solution. (1) We have $\mathbb{E} \int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s=\int_{0}^{t} \mathbb{E} \mathbf{B}_{s}^{2} \mathrm{~d} s=\int_{0}^{t} s \mathrm{~d} s=\frac{1}{2} t^{2}$.
(2) We have

$$
\begin{aligned}
\mathbb{E}\left|\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s\right|^{2} & =\int_{0}^{t} \int_{0}^{t} \mathbb{E}\left[\mathbf{B}_{s}^{2} \mathbf{B}_{r}^{2}\right] \mathrm{d} r \mathrm{~d} s=2 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\mathbf{B}_{s}^{2} \mathbf{B}_{r}^{2}\right] \mathrm{d} r \mathrm{~d} s \\
& =2 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}\right] \mathrm{d} r \mathrm{~d} s+4 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right) \mathbf{B}_{r}^{3}\right] \mathrm{d} r \mathrm{~d} s \\
& +2 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\mathbf{B}_{r}^{4}\right] \mathrm{d} r \mathrm{~d} s
\end{aligned}
$$

The second term in the last expression is zero by independence and mean-zero of increments. Since $\mathbf{B}_{r} \sim N(0, r)$ and $\mathbf{B}_{s}-\mathbf{B}_{r} \sim N(0, s-r)$, by independent of increments, we have

$$
\begin{aligned}
2 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}\right] \mathrm{d} r \mathrm{~d} s & =2 \int_{0}^{t} \int_{0}^{s}(s-r) r \mathrm{~d} r \mathrm{~d} s \\
& =2 \int_{0}^{t} \int_{0}^{s} s r \mathrm{~d} r \mathrm{~d} s-2 \int_{0}^{t} \int_{0}^{s} r^{2} \mathrm{~d} r \mathrm{~d} s \\
& =\int_{0}^{t} s^{3} \mathrm{~d} s-\frac{2}{3} \int_{0}^{t} s^{3} \mathrm{~d} s=\frac{1}{4} t^{4}-\frac{1}{6} t^{4}=\frac{1}{12} t^{4} \\
2 \int_{0}^{t} \int_{0}^{s} \mathbb{E}\left[\mathbf{B}_{r}^{4}\right] \mathrm{d} r & =6 \int_{0}^{t} \int_{0}^{s} r^{2} \mathrm{~d} r \mathrm{~d} s=2 \int_{0}^{t} s^{3} \mathrm{~d} s=\frac{1}{2} t^{4}
\end{aligned}
$$

By combining the previous two displays, we get $\mathbb{E}\left|\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s\right|^{2}=\frac{7}{12} t^{4}$.
(3) By parts (1) and (2), we have $\operatorname{Var} \int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s=\frac{7}{12} t^{4}-\frac{1}{4} t^{4}=\frac{1}{3} t^{4}$.
1.2. Brownian Gambler's ruin (Hint: use optional stopping!) Let \mathbf{B} be Brownian motion, and fix $a, b>0$. Let $\tau_{a, b}$ be the first time τ such that $\mathbf{B}_{\tau} \in\{-a, b\}$.
(1) Find the probability that $\mathbf{B}_{\tau_{a, b}}=a$.
(2) Compute $\mathbb{E} \tau_{a, b}$.

Solution. (1) By optional stopping and the martingale property of \mathbf{B}, we have $\mathbb{E} \mathbf{B}_{\tau_{a, b}}=0$. But $\left.\mathbb{E} \mathbf{B}_{\tau_{a, b}}=-a \mathbb{P}\left[\mathbf{B}_{\tau_{a, b}}=-a\right]+b \mathbb{P}\left[\mathbf{B}_{\tau_{a, b}}=b\right]\right)=-a \mathbb{P}\left[\mathbf{B}_{\tau_{a, b}}=-a\right]+b(1-$ $\mathbb{P}\left[\mathbf{B}_{\tau_{a, b}}=-a\right]$. Thus, we get $\mathbb{P}\left[\mathbf{B}_{\tau_{a, b}}=-a\right]=\frac{b}{a+b}$.
(2) By optional stopping and the martingale property of $\mathbf{B}_{t}^{2}-t$, we have $\mathbb{E} \mathbf{B}_{\tau_{a, b}}^{2}=\mathbb{E} \tau_{a, b}$. By part (1), we have $\mathbb{E} \tau_{a, b}=\mathbb{E} \mathbf{B}_{\tau_{a, b}}^{2}=a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=\frac{a^{2} b+a b^{2}}{a+b}$.
1.3. Moment generating function of Gaussians, Brownian motion style. Consider the process $\mathbf{M}_{t}:=\exp \left\{\lambda \mathbf{B}_{t}-\mu t\right\}$, where $\lambda, \mu \in \mathbb{R}$.
(1) Fix $\lambda \in \mathbb{R}$. For which $\mu=\mu(\lambda) \in \mathbb{R}$ does \mathbf{M} satisfy the martingale property? ($\mu(\lambda)$ will depend on λ.) In what follows, we will always take \mathbf{M}_{t} for this choice of $\mu=\mu(\lambda)$.
(2) Fix $\lambda \in \mathbb{R}$. Show that $\mathbb{E} M_{1}=1$.
(3) Deduce that if $Z \sim N(0,1)$, then $\mathbb{E} e^{\lambda Z}=e^{\lambda^{2} / 2}$. (Hint: recall $\mathbf{B}_{1} \sim N(0,1)$.)

Solution. (1) As shown in class, for \mathbf{M}_{t} to be a martingale, we need to find μ such that

$$
\left(\partial_{t}+\frac{1}{2} \partial_{x}^{2}\right) \exp \{\lambda x-\mu t\}=0
$$

The LHS is equal to $\exp \{\lambda x-\mu t\}\left(-\mu+\frac{1}{2} \lambda^{2}\right)$. Thus, it suffices to take $\mu=\frac{1}{2} \lambda^{2}$.
(2) By the martingale property, we have $\mathbb{E} M_{1}=\mathbb{E} \mathbf{M}_{0}=1$.
(3) By part (2), we have $\mathbb{E} e^{\lambda \mathbf{B}_{1}-\lambda^{2} / 2}=1$. Thus, $\mathbb{E} e^{\lambda \mathbf{B}_{1}}=e^{\lambda^{2} / 2}$. Conclude by the hint.
1.4. Ergodicity of the OU process. Suppose X_{t} is an OU process with initial condition X_{0}, that is $\mathrm{d} X_{t}=-X_{t} \mathrm{~d} t+\mathrm{d} \mathbf{B}_{t}$, where \mathbf{B}_{t} is a Brownian motion.
(1) Show that $N(0,1)$ is an invariant distribution for the OU process (see the notes for what this means).
(2) Let Z_{t} be an OU process with initial condition $Z_{0} \sim N(0,1)$. That is, $\mathrm{d} Z_{t}=-Z_{t}+$ $\mathrm{d} \mathbf{B}_{t}$, where \mathbf{B} is the same Brownian motion from above. Define $Y_{t}=X_{t}-Z_{t}$. Show that $Y_{t}=Y_{0} e^{-t}$ for all $t \geqslant 0$. Deduce that $Y_{t} \rightarrow 0$ as $t \rightarrow \infty$. (Hint: compute the differential equation solved by Y_{t} using the SDEs for X_{t}, Z_{t}; you can use that any solution to $f^{\prime}(t)=-f(t)$ is given by $f(t)=f(0) e^{-t}$.)

Solution. (1) As shown in class, it suffices to show that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} p(x)+\frac{\mathrm{d}}{\mathrm{~d} x}(x p(x))=0,
$$

where $p(x)$ is the pdf for $N(0,1)$. We check this directly:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} p(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}=-\frac{1}{\sqrt{2 \pi}} x e^{-\frac{x^{2}}{2}} \\
\frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} p(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(-\frac{1}{\sqrt{2 \pi}} x e^{-\frac{x^{2}}{2}}\right)=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} x^{2} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} p(x)+\frac{\mathrm{d}}{\mathrm{~d} x}(x p(x)) & =-\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} x^{2} e^{-\frac{x^{2}}{2}}-\frac{1}{\sqrt{2 \pi}} x^{2} e^{-\frac{x^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& =0
\end{aligned}
$$

so we are done.
(2) We have $\mathrm{d} Y_{t}=\mathrm{d} X_{t}-\mathrm{d} Z_{t}=-X_{t} \mathrm{~d} t+Z_{t} \mathrm{~d} t=-Y_{t} \mathrm{~d} t$. Now use the hint to get $Y_{t}=Y_{0} e^{-t}$.
1.5. Brownian bridge. The Brownian bridge is a "Brownian motion conditioned to hit 0 at time 1 ". The point of this exercise is to make this precise in a more natural way.

Let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a collection of i.i.d. $N(0,1)$ random variables. For any $N>0$, define

$$
\mathbf{Z}_{t}^{(N)}:=\sum_{k=1}^{N} \frac{z_{k} \sqrt{2}}{k \pi} \sin (k \pi t)
$$

Show that $\mathbf{Z}_{0}^{(N)}=\mathbf{Z}_{1}^{(N)}=0$. Show that $\mathbb{E} \mathbf{Z}_{t}^{(N)}=0$ and that

$$
\mathbb{E}\left|\mathbf{Z}_{t}^{(N)}-\mathbf{Z}_{t}^{(M)}\right|^{2} \rightarrow_{N, M \rightarrow \infty} 0
$$

Solution. We know that $\sin (k \pi)=0$ for any integer k, so $\mathbf{Z}_{0}^{(N)}, \mathbf{Z}_{1}^{(N)}=0$ follows. Since z_{k} have expectation 0 , by linearity of expectation, we have $\mathbb{E} \mathbf{Z}_{t}^{(N)}=\sum_{k=1}^{N} \frac{\mathbb{E}\left[z_{k}\right] \sqrt{2}}{k \pi} \sin (k \pi t)=$ 0 . Moreover, we have

$$
\mathbf{Z}_{t}^{(N)}-\mathbf{Z}_{t}^{(M)}=\sum_{k=N+1}^{M} \frac{z_{k} \sqrt{2}}{k \pi} \sin (k \pi t)
$$

Since z_{k} are i.i.d. $N(0,1)$, we have

$$
\mathbb{E}\left|\mathbf{Z}_{t}^{(N)}-\mathbf{Z}_{t}^{(M)}\right|^{2}=\sum_{k=N+1}^{M} \frac{2 \mathbb{E}\left|z_{k}\right|^{2}}{k^{2} \pi^{2}} \sin (k \pi t)^{2} \leqslant \sum_{k=N+1}^{M} \frac{2}{k^{2} \pi^{2}}
$$

which is $\leqslant C N^{-1}$ for some constant $C>0$. Since $N^{-1} \rightarrow 0$ as $N \rightarrow \infty$, we are done.

