Math 154: Probability Theory, HW 10

DUE APRIL 16, 2024 By 9AM
Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Getting our hands on Brownian motion

1.1. A computation. Consider the integral $\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.
(1) Compute $\mathbb{E} \int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.
(2) Compute $\mathbb{E}\left|\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s\right|^{2}$. (Hint: as in class, square the integral to get a double integral over $0 \leqslant r \leqslant s \leqslant t$. For $r \leqslant s$, it may then help to write $\mathbf{B}_{s}^{2} \mathbf{B}_{r}^{2}=\left(\mathbf{B}_{s}-\mathbf{B}_{r}+\right.$ $\left.\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}=\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right)^{2} \mathbf{B}_{r}^{2}+2\left(\mathbf{B}_{s}-\mathbf{B}_{r}\right) \mathbf{B}_{r}^{3}+\mathbf{B}_{r}^{4}$. Now use independence of increments and knowledge of the distribution of increments.)
(3) Deduce the variance of $\int_{0}^{t} \mathbf{B}_{s}^{2} \mathrm{~d} s$.
1.2. Brownian Gambler's ruin (Hint: use optional stopping!) Let \mathbf{B} be Brownian motion, and fix $a, b>0$. Let $\tau_{a, b}$ be the first time τ such that $\mathbf{B}_{\tau} \in\{-a, b\}$.
(1) Find the probability that $\mathbf{B}_{\tau_{a, b}}=-a$.
(2) Compute $\mathbb{E} \tau_{a, b}$.
1.3. Moment generating function of Gaussians, Brownian motion style. Consider the process $\mathbf{M}_{t}:=\exp \left\{\lambda \mathbf{B}_{t}-\mu t\right\}$, where $\lambda, \mu \in \mathbb{R}$.
(1) Fix $\lambda \in \mathbb{R}$. For which $\mu=\mu(\lambda) \in \mathbb{R}$ does \mathbf{M} satisfy the martingale property? $(\mu(\lambda)$ will depend on λ)
(2) Fix $\lambda \in \mathbb{R}$. Show that $\mathbb{E} \mathbf{M}_{1}=1$. In what follows, we will always take M_{t} for this choice of $\mu=\mu(\lambda)$.
(3) Deduce that if $Z \sim N(0,1)$, then $\mathbb{E} e^{\lambda Z}=e^{\lambda^{2} / 2}$. (Hint: recall $\mathbf{B}_{1} \sim N(0,1)$.)
1.4. Ergodicity of the OU process. Suppose X_{t} is an OU process with initial condition X_{0}, that is $\mathrm{d} X_{t}=-X_{t} \mathrm{~d} t+\sqrt{2} \mathrm{~d} \mathbf{B}_{t}$, where \mathbf{B}_{t} is a Brownian motion.
(1) Show that $N(0,1)$ is an invariant distribution for the OU process (see the notes for what this means).
(2) Let Z_{t} be an OU process with initial condition $Z_{0} \sim N(0,1)$. That is, $\mathrm{d} Z_{t}=-Z_{t}+$ $\sqrt{2} \mathrm{~d} \mathbf{B}_{t}$, where \mathbf{B} is the same Brownian motion from above. Define $Y_{t}=X_{t}-Z_{t}$. Show that $Y_{t}=Y_{0} e^{-t}$ for all $t \geqslant 0$. Deduce that $Y_{t} \rightarrow 0$ as $t \rightarrow \infty$. (Hint: compute the differential equation solved by Y_{t} using the SDEs for X_{t}, Z_{t}; you can use that any solution to $f^{\prime}(t)=-f(t)$ is given by $f(t)=f(0) e^{-t}$.)
1.5. Brownian bridge. The Brownian bridge is a "Brownian motion conditioned to hit 0 at time 1 ". The point of this exercise is to make this precise in a more natural way.

Let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a collection of i.i.d. $N(0,1)$ random variables. For any $N>0$, define

$$
\mathbf{Z}_{t}^{(N)}:=\sum_{k=1}^{N} \frac{z_{k} \sqrt{2}}{k \pi} \sin (k \pi t) .
$$

Show that $\mathbf{Z}_{0}^{(N)}=\mathbf{Z}_{1}^{(N)}=0$. Show that $\mathbb{E} \mathbf{Z}_{t}^{(N)}=0$ and that

$$
\mathbb{E}\left|\mathbf{Z}_{t}^{(N)}-\mathbf{Z}_{t}^{(M)}\right|^{2} \rightarrow_{N, M \rightarrow \infty} 0 .
$$

