Math 154: Probability Theory, HW 10

DUE APRIL 16, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. GETTING OUR HANDS ON BROWNIAN MOTION

1.1. A computation. Consider the integral $\int_0^t \mathbf{B}_s^2 ds$.

- (1) Compute $\mathbb{E} \int_0^t \mathbf{B}_s^2 ds$.
- (2) Compute $\mathbb{E}|\int_0^t \mathbf{B}_s^2 ds|^2$. (*Hint*: as in class, square the integral to get a double integral over $0 \le r \le s \le t$. For $r \le s$, it may then help to write $\mathbf{B}_s^2 \mathbf{B}_r^2 = (\mathbf{B}_s \mathbf{B}_r + \mathbf{B}_r)^2 \mathbf{B}_r^2 = (\mathbf{B}_s \mathbf{B}_r)^2 \mathbf{B}_r^2 + 2(\mathbf{B}_s \mathbf{B}_r)\mathbf{B}_r^3 + \mathbf{B}_r^4$. Now use independence of increments and knowledge of the distribution of increments.)
- (3) Deduce the variance of $\int_0^t \mathbf{B}_s^2 ds$.

1.2. Brownian Gambler's ruin (*Hint*: use optional stopping!) Let B be Brownian motion, and fix a, b > 0. Let $\tau_{a,b}$ be the first time τ such that $\mathbf{B}_{\tau} \in \{-a, b\}$.

- (1) Find the probability that $\mathbf{B}_{\tau_{a,b}} = -\mathbf{a}$.
- (2) Compute $\mathbb{E}\tau_{a,b}$.

1.3. Moment generating function of Gaussians, Brownian motion style. Consider the process $\mathbf{M}_t := \exp \{\lambda \mathbf{B}_t - \mu t\}$, where $\lambda, \mu \in \mathbb{R}$.

- (1) Fix $\lambda \in \mathbb{R}$. For which $\mu = \mu(\lambda) \in \mathbb{R}$ does M satisfy the martingale property? ($\mu(\lambda)$ will depend on λ)
- (2) Fix $\lambda \in \mathbb{R}$. Show that $\mathbb{E}\mathbf{M}_1 = 1$. In what follows, we will always take \mathbf{M}_t for this choice of $\mu = \mu(\lambda)$.
- (3) Deduce that if $Z \sim N(0, 1)$, then $\mathbb{E}e^{\lambda Z} = e^{\lambda^2/2}$. (*Hint*: recall $\mathbf{B}_1 \sim N(0, 1)$.)

1.4. Ergodicity of the OU process. Suppose X_t is an OU process with initial condition

- X_0 , that is $dX_t = -X_t dt + \sqrt{2} dB_t$, where B_t is a Brownian motion.
- (1) Show that N(0, 1) is an invariant distribution for the OU process (see the notes for what this means).
- (2) Let Z_t be an OU process with initial condition $Z_0 \sim N(0, 1)$. That is, $dZ_t = -Z_t + \sqrt{2} dB_t$, where B is the *same* Brownian motion from above. Define $Y_t = X_t Z_t$. Show that $Y_t = Y_0 e^{-t}$ for all $t \ge 0$. Deduce that $Y_t \to 0$ as $t \to \infty$. (*Hint*: compute the differential equation solved by Y_t using the SDEs for X_t, Z_t ; you can use that any solution to f'(t) = -f(t) is given by $f(t) = f(0)e^{-t}$.)

1.5. **Brownian bridge.** The Brownian bridge is a "Brownian motion conditioned to hit 0 at time 1". The point of this exercise is to make this precise in a more natural way.

Let $\{z_k\}_{k=1}^{\infty}$ be a collection of i.i.d. N(0,1) random variables. For any N > 0, define

$$\mathbf{Z}_t^{(N)} := \sum_{k=1}^N \frac{z_k \sqrt{2}}{k\pi} \sin(k\pi t).$$

Show that $\mathbf{Z}_0^{(N)} = \mathbf{Z}_1^{(N)} = 0$. Show that $\mathbb{E}\mathbf{Z}_t^{(N)} = 0$ and that $\mathbb{E}|\mathbf{Z}_t^{(N)} - \mathbf{Z}_t^{(M)}|^2 \rightarrow_{N,M \to \infty} 0$.